Processing math: 14%
Further Mathematics questions and answers

Further Mathematics Questions and Answers

Test your knowledge of advanced level mathematics with this aptitude test. This test comprises Further Maths questions and answers from past JAMB and WAEC examinations.

676.

A binary operation * is defined on the set of real numbers, by ab=ab+ba. If (x+1)(x1)=4, find the value of x. 

A.

6

B.

5

C.

4

D.

3

Correct answer is D

(x+1)(x1)=4x+1x1+x1x+1=4

(x+1)(x+1)+(x1)(x1)(x1)(x+1)

= x+2x+1+x2x+1x12x+2x1=4

2x+2=4x4

x = 3

677.

Given that f(x) = 3x^{2} -  12x + 12 and f(x) = 3, find the values of x.

A.

1, 3

B.

-1, -3

C.

1, -3

D.

-1, 3

Correct answer is A

f(x) = 3x^{2} - 12x + 12 and f(x) = 3

\therefore f(x) = 3 = 3x^{2} - 12x + 12 \implies 3x^{2} - 12x + 12 - 3 = 0

3x^{2} - 12x + 9 = 0; 3x^{2} - 9x - 3x + 9 = 0

3x(x - 3) - 3(x - 3) = (3x - 3)(x - 3) = 0

3x - 3 = 0 or x - 3 = 0

x = 1 or 3

678.

Find the domain of g(x) = \frac{4x^{2} - 1}{\sqrt{9x^{2} + 1}}

A.

{x : x \in R, x = \frac{1}{2}}

B.

x: x \in R, x\neq \frac{1}{3}

C.

x : x \in R, x = \frac{1}{3}

D.

x: x \in R

Correct answer is D

The domain of a function refers to the regions where the function is defined or has a value on a particular region.

\frac{4x^{2} - 1}{\sqrt{9x^{2} + 1}} has a domain defined on all set of real numbers because the function is defined on the set of real numbers when the denominator \sqrt{9x^{2} + 1} \geq 0.

\sqrt{9x^{2} + 1} \geq 0 \implies 9x^{2} + 1 \geq 0 which because of the square sign has a value for all values of x, be it negative or positive.

 

679.

Simplify \frac{\sqrt{3}}{\sqrt{3} -1} + \frac{\sqrt{3}}{\sqrt{3} + 1}

A.

\frac{1}{2}

B.

3

C.

2\sqrt{3}

D.

6

Correct answer is B

\frac{\sqrt{3}}{\sqrt{3} - 1} + \frac{\sqrt{3}}{\sqrt{3} + 1}

= \frac{\sqrt{3}(\sqrt{3} + 1) + \sqrt{3}(\sqrt{3} - 1)}{(\sqrt{3} - 1)(\sqrt{3} + 1)}

= \frac{3 + \sqrt{3} + 3 - \sqrt{3}}{3 + \sqrt{3} - \sqrt{3} - 1}

= \frac{6}{2} = 3

680.

If (2x^{2} - x - 3) is a factor of f(x) = 2x^{3} - 5x^{2} - x + 6, find the other factor

A.

(x - 2)

B.

(x - 1)

C.

(x + 1)

D.

(x + \frac{3}{2})

Correct answer is A

Divide (2x^{3} - 5x^{2} - x + 6) by (2x^{2} - x - 3) to get the other factor. Be careful of sign conventions.