\(\frac{7}{6}\)
\(\frac{5}{6}\)
\(\frac{-5}{6}\)
\(\frac{-7}{6}\)
Correct answer is D
Expanding \((x+1)(x-2) = x^{2} - 2x + x - 2 = x^{2} - x - 2\)
\(\int_{-1}^{0} (x^{2} - x - 2) \mathrm{d}x = [\frac{x^{3}}{3} - \frac{x^{2}}{2} - 2x]_{-1}^{0}\)
= \([\frac{0}{3} - \frac{0}{2} - 2\times0 - (\frac{-1^{3}}{3} - \frac{-1^{2}}{2} - 2\times-1)]\)
= \(0 + \frac{1}{3} + \frac{1}{2} - 2 = \frac{-7}{6}\)
Note: This can also be solved using integration by parts.
\(\int uv \mathrm{d}x = u\int v \mathrm{d}x - \int u'(\int v \mathrm{d}x)\mathrm{d}x\).
Find the equation of the tangent to the curve \(y = 4x^{2} - 12x + 7\) at point (2, -1)....
Integrate \((x - \frac{1}{x})^{2}\) with respect to x....
The function \(f : F \to R\) = \(f(x) = \begin{cases} 3x + 2 : x > 4 \\ 3x - 2 : x = 4 \\ ...
Simplify \(\frac{x^{3n + 1}}{x^{2n + \frac{5}{2}}(x^{2n - 3})^{\frac{1}{2}}}\)...
Given that \(f(x) = 2x^{3} - 3x^{2} - 11x + 6\) and \(f(3) = 0\), factorize f(x)...