\(\frac{7}{6}\)
\(\frac{5}{6}\)
\(\frac{-5}{6}\)
\(\frac{-7}{6}\)
Correct answer is D
Expanding \((x+1)(x-2) = x^{2} - 2x + x - 2 = x^{2} - x - 2\)
\(\int_{-1}^{0} (x^{2} - x - 2) \mathrm{d}x = [\frac{x^{3}}{3} - \frac{x^{2}}{2} - 2x]_{-1}^{0}\)
= \([\frac{0}{3} - \frac{0}{2} - 2\times0 - (\frac{-1^{3}}{3} - \frac{-1^{2}}{2} - 2\times-1)]\)
= \(0 + \frac{1}{3} + \frac{1}{2} - 2 = \frac{-7}{6}\)
Note: This can also be solved using integration by parts.
\(\int uv \mathrm{d}x = u\int v \mathrm{d}x - \int u'(\int v \mathrm{d}x)\mathrm{d}x\).
If \((x - 5)\) is a factor of \(x^3 - 4x^2 - 11x + 30\), find the remaining factors....
If \(\frac{15 - 2x}{(x+4)(x-3)}\) = \(\frac{R}{(x+4)}\) \(\frac{9}{7(x-3)}\), find the value of...
If \(\begin{vmatrix} k & k \\ 4 & k \end{vmatrix} + \begin{vmatrix} 2 & 3 \\...
A force 10N acts in the direction 060° and another force 6N acts in the direction 330°. Find...