Further Mathematics questions and answers

Further Mathematics Questions and Answers

Test your knowledge of advanced level mathematics with this aptitude test. This test comprises Further Maths questions and answers from past JAMB and WAEC examinations.

691.

Given that \( a = \begin{pmatrix} 2 \\ 3 \end{pmatrix}\) and \(b = \begin{pmatrix} -1 \\ 4 \end{pmatrix}\), evaluate \((2a - \frac{1}{4}b)\)

A.

\(\begin{pmatrix} \frac{17}{4} \\ 7 \end{pmatrix}\)

B.

\(\begin{pmatrix} \frac{17}{4} \\ 5 \end{pmatrix}\)

C.

\(\begin{pmatrix} \frac{17}{4} \\ 3 \end{pmatrix}\)

D.

\(\begin{pmatrix} \frac{17}{4} \\ 2 \end{pmatrix}\)

Correct answer is B

\(a = \begin{pmatrix} 2 \\ 3 \end{pmatrix}\); \(b = \begin{pmatrix} -1 \\ 4 \end{pmatrix}\)

\(\implies 2 \times a = \begin{pmatrix} 4 \\ 6 \end{pmatrix}\) and \(\frac{1}{4} \times b = \begin{pmatrix} -\frac{1}{4} \\ 1 \end{pmatrix}\)

\(\therefore 2a - \frac{1}{4}b = \begin{pmatrix} 4 - \frac{-1}{4} \\ 6 - 1 \end{pmatrix}\)

= \(\begin{pmatrix} \frac{17}{4} \\ 5 \end{pmatrix}\)

692.

A fair die is tossed twice. What is its smple size?

A.

6

B.

12

C.

36

D.

48

Correct answer is C

Sample size = 6 x 6 = 36.

693.

In a class of 10 boys and 15 girls, the average score in a Biology test is 90. If the average score for the girls is x, find the average score for the boys in terms of x.

A.

\(200 - \frac{2x}{3}\)

B.

\(225 - \frac{3x}{2}\)

C.

\(250 - 2x\)

D.

\(250 - 3x\)

Correct answer is B

Let A and B be the sum for the boys and girls respectively.

\(\frac{A + B}{10 + 15} = \frac{A + B}{25} = 90\)

\(\implies A + B = 90 \times 25 = 2250\)

Given the average for girls = x, we have \(\frac{B}{15} = x \implies B = 15x)

\(\therefore A + 15x = 2250; A = 2250 - 15x \implies\) average score for boys \(= \frac{2250 - 15x}{10}\)

= \(225 - \frac{3x}{2}\) 

694.

A curve is given by \(y = 5 - x - 2x^{2}\). Find the equation of its line of symmetry.

A.

\(x = \frac{-41}{8}\)

B.

\(x = \frac{-1}{4}\)

C.

\(x = \frac{1}{4}\)

D.

\(x = \frac{41}{8}\)

Correct answer is B

The line of symmetry of the curve is at the minimum point of the curve (ie y' = 0)

\(\frac{ \mathrm d}{ \mathrm d x} \left ( 5-x-2x^{2} \right)\) = -1 - 4x

If y' = 0, we have \(-1 - 4x = 0 \implies 4x = -1\)

\(x = \frac{-1}{4}\)

695.

Differentiate \(\frac{5x^{3} + x^{2}}{x}, x\neq 0\) with respect to x.

A.

10x+1

B.

10x+2

C.

x(15x+1)

D.

x(15x+2)

Correct answer is A

This can be done either by using quotient rule or by direct division of the equation, then differentiate.

\(\frac{\mathrm d}{\mathrm d x} \left( \frac{5x^{3} + x^{2}}{x} \right)\)     

= \(\frac{\mathrm d}{\mathrm d x} \left ( \frac{5x^{3}}{x} + \frac{x^{2}}{x} \right)\)

= \(\frac{\mathrm d}{\mathrm d x} \left ( 5x^{2} + x \right)\)

= \(10x + 1\)