\(\frac{2}{(1-x)^{2}}\)
\(\frac{-2}{(1-x)^{2}}\)
\(\frac{-1}{\sqrt{1-x}}\)
\(\frac{1}{\sqrt{1-x}}\)
Correct answer is A
\(y = \frac{1+x}{1-x}\)
Using quotient rule, \(\frac{v\frac{du}{dx} - u\frac{dv}{dx}}{v^{2}}\), we have
\(\frac{dy}{dx} = \frac{(1-x)(1) - (1+x)(-1)}{(1-x)^{2}} = \frac{(1 - x +1 +x)}{(1-x)^{2}}\)
= \(\frac{2}{(1-x)^{2}}\).
The angle of a sector of a circle is 0.9 radians. If the radius of the circle is 4cm, find the ...
Solve \(9^{2x + 1} = 81^{3x + 2}\)...
A force of 30 N acts at an angle of 60° on a body of mass 6 kg initially at rest on a smooth hor...
If \(f(x) = \frac{4}{x} - 1, x \neq 0\), find \(f^{-1}(7)\)....
Find, in surd form, the value of \(\cos 165\)....
Evaluate \(\int_{1}^{2} [\frac{x^{3} - 1}{x^{2}}] \mathrm {d} x\)...
If sin x = \(\frac{12}{13}\) and sin y = \(\frac{4}{5}\), where x and y are acute angles, find&...