\(\frac{2}{(1-x)^{2}}\)
\(\frac{-2}{(1-x)^{2}}\)
\(\frac{-1}{\sqrt{1-x}}\)
\(\frac{1}{\sqrt{1-x}}\)
Correct answer is A
\(y = \frac{1+x}{1-x}\)
Using quotient rule, \(\frac{v\frac{du}{dx} - u\frac{dv}{dx}}{v^{2}}\), we have
\(\frac{dy}{dx} = \frac{(1-x)(1) - (1+x)(-1)}{(1-x)^{2}} = \frac{(1 - x +1 +x)}{(1-x)^{2}}\)
= \(\frac{2}{(1-x)^{2}}\).
Find the range of values of x for which 2x\(^2\) + 7x - 15 ≥ 0....
Solve for x in the equation \(5^{x} \times 5^{x + 1} = 25\)...
Evaluate \(4p_2 + 4C_2 - 4p_3\)...
Evaluate \(\int^0_0 \sqrt{x} dx\)...
For what range of values of x is x\(^2\) - 2x - 3 ≤ 0...
Given that \(y^2 + xy = 5,find \frac{dy}{dx}\)...
Find the locus of points which is equidistant from P(4, 5) and Q(-6, -1). ...