Test your knowledge of advanced level mathematics with this aptitude test. This test comprises Further Maths questions and answers from past JAMB and WAEC examinations.
x2+y2+8x−10y+21=0
x2+y2+8x−10y−21=0
x2+y2−8x−10y−21=0
x2+y2−8x−10y+21=0
Correct answer is D
On the y-intercept, x=0. At this point, y = 5(0) - 2y = -6; y = 3, so the y- intercept has coordinates (0,3).
The equation of the circle is given as (x−a)2+(y−b)2=r2, where (a,b) is the centre and r is the radius.
The radius of the circle through the y- intercept = √(4−0)2+(5−3)2=√20
The equation of the circle is (x−4)2+(y−5)2=20; expanding, we have
x2+y2+8x−10y+21=0
Given that sinx=513 and siny=817, where x and y are acute, find cos(x+y).
130221
140221
140204
22023
Correct answer is B
cos(x+y)=cosxcosy−sinxsiny
Given sin of an angle implies we have the value of the opposite and hypotenuse of the right-angled triangle. We find the adjacent side using Pythagoras' theorem.
Adj2=Hyp2−Opp2
For triangle with angle x, adj=√132−52=√144=12
For triangle with angle y, adj=√172−82=√225=15
∴
\cos(x+y) = (\frac{12}{13}\times\frac{15}{17}) - (\frac{5}{13}\times\frac{8}{17}) = \frac{180}{221} - \frac{40}{221}
= \frac{140}{221}
If B = \begin{pmatrix} 2 & 5 \\ 1 & 3 \end{pmatrix}, find B^{-1}.
A = \begin{pmatrix} -3 & -5 \\ 1 & 2 \end{pmatrix}
A = \begin{pmatrix} 3 & -5 \\ 1 & 2 \end{pmatrix}
A = \begin{pmatrix} 3 & -5 \\ -1 & 2 \end{pmatrix}
A = \begin{pmatrix} -3 & 5 \\ 1 & -2 \end{pmatrix}
Correct answer is C
B.B^{-1} = 1, let B^{-1} = \begin{pmatrix} a & b \\ c & d \end{pmatrix}
\begin{pmatrix} 2 & 5 \\ 1 & 3 \end{pmatrix}\begin{pmatrix} a & b \\ c & d \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}
Multiplying B \times B^{-1}, we have the following equations:
2a+5c = 1......... (1); a+3c = 0 ........(2)
2b+5d = 0 ..........(3); b+3d = 1..........(4)
Solving the equations simultaneously, we have
a = 3; b = -5; c = -1; d = 2 \implies B^{-1} = \begin{pmatrix} 3 & -5 \\ -1 & 2 \end{pmatrix}
\frac{-9}{8}
\frac{-7}{8}
\frac{7}{8}
\frac{9}{8}
Correct answer is B
\frac{\alpha}{\beta} + \frac{\beta}{\alpha} = \frac{\alpha^{2} + \beta^{2}}{\alpha\beta}
\alpha + \beta = \frac{-b}{a}; \alpha\beta = \frac{c}{a}
\alpha^{2} + \beta^{2} = (\alpha + \beta)^{2} - 2(\alpha\beta)
From the equation, a = 2, b = -3, c =4
\alpha + \beta = \frac{-(-3)}{2} = \frac{3}{2}
\alpha\beta = \frac{4}{2} = 2
\alpha^{2} + \beta^{2} = (\frac{3}{2})^{2} - 2(2)) = \frac{9}{4} - 4 = \frac{-7}{4}
\implies \frac{\alpha}{\beta} + \frac{\beta}{\alpha} = \frac{\frac{-7}{4}}{2} = \frac{-7}{8}
-2
-\frac{3}{2}
\frac{3}{2}
2
Correct answer is C
\alpha + \beta = \frac{-b}{a}
From the equation, a = 2, b = -3 and c = 4
\alpha + \beta = \frac{-(-3)}{2} = \frac{3}{2}