Processing math: 29%
Further Mathematics questions and answers

Further Mathematics Questions and Answers

Test your knowledge of advanced level mathematics with this aptitude test. This test comprises Further Maths questions and answers from past JAMB and WAEC examinations.

701.

A circle with centre (4,5) passes through the y-intercept of the line 5x - 2y + 6 = 0. Find its equation.

A.

x2+y2+8x10y+21=0

B.

x2+y2+8x10y21=0

C.

x2+y28x10y21=0

D.

x2+y28x10y+21=0

Correct answer is D

On the y-intercept, x=0. At this point, y = 5(0) - 2y = -6; y = 3, so the y- intercept has coordinates (0,3).

The equation of the circle is given as (xa)2+(yb)2=r2, where (a,b) is the centre and r is the radius.

The radius of the circle through the y- intercept = (40)2+(53)2=20

The equation of the circle is (x4)2+(y5)2=20; expanding, we have

x2+y2+8x10y+21=0

702.

Given that sinx=513 and siny=817, where x and y are acute, find cos(x+y).

A.

130221

B.

140221

C.

140204

D.

22023

Correct answer is B

cos(x+y)=cosxcosysinxsiny

Given sin of an angle implies we have the value of the opposite and hypotenuse of the right-angled triangle. We find the adjacent side using Pythagoras' theorem.

Adj2=Hyp2Opp2

For triangle with angle x, adj=13252=144=12

For triangle with angle y, adj=17282=225=15

\cos(x+y) = (\frac{12}{13}\times\frac{15}{17}) - (\frac{5}{13}\times\frac{8}{17}) = \frac{180}{221} - \frac{40}{221}

= \frac{140}{221}

703.

If B = \begin{pmatrix}  2 & 5  \\  1 & 3  \end{pmatrix}, find B^{-1}.

A.

A = \begin{pmatrix} -3 & -5 \\ 1 & 2 \end{pmatrix}

B.

A = \begin{pmatrix} 3 & -5 \\ 1 & 2 \end{pmatrix}

C.

A = \begin{pmatrix} 3 & -5 \\ -1 & 2 \end{pmatrix}

D.

A = \begin{pmatrix} -3 & 5 \\ 1 & -2 \end{pmatrix}

Correct answer is C

B.B^{-1} = 1, let B^{-1} = \begin{pmatrix}  a & b  \\  c & d  \end{pmatrix}

\begin{pmatrix}  2 & 5  \\  1 & 3  \end{pmatrix}\begin{pmatrix}  a & b  \\  c & d  \end{pmatrix}\begin{pmatrix}  1 & 0  \\  0 & 1  \end{pmatrix}

Multiplying B \times B^{-1}, we have the following equations:

2a+5c = 1......... (1); a+3c = 0 ........(2)

2b+5d = 0 ..........(3); b+3d = 1..........(4)

Solving the equations simultaneously, we have

a = 3; b = -5; c = -1; d = 2 \implies B^{-1} = \begin{pmatrix}  3 & -5  \\  -1 & 2  \end{pmatrix}

704.

\alpha and \beta are the roots of the equation 2x^{2} - 3x + 4 = 0. Find \frac{\alpha}{\beta} + \frac{\beta}{\alpha}

A.

\frac{-9}{8}

B.

\frac{-7}{8}

C.

\frac{7}{8}

D.

\frac{9}{8}

Correct answer is B

\frac{\alpha}{\beta} + \frac{\beta}{\alpha} = \frac{\alpha^{2} + \beta^{2}}{\alpha\beta}

\alpha + \beta = \frac{-b}{a}; \alpha\beta = \frac{c}{a}

\alpha^{2} + \beta^{2} = (\alpha + \beta)^{2} - 2(\alpha\beta)

From the equation, a = 2, b = -3, c =4

\alpha + \beta = \frac{-(-3)}{2} = \frac{3}{2}

\alpha\beta = \frac{4}{2} = 2

\alpha^{2} + \beta^{2} = (\frac{3}{2})^{2} - 2(2)) = \frac{9}{4} - 4 = \frac{-7}{4}

\implies \frac{\alpha}{\beta} + \frac{\beta}{\alpha} = \frac{\frac{-7}{4}}{2} = \frac{-7}{8}

705.

\alpha and \beta are the roots of the equation 2x^{2} - 3x + 4 = 0. Find \alpha + \beta.\alpha and \beta are the roots of the equation 2x^{2} - 3x + 4 = 0. Find \alpha + \beta.

A.

-2

B.

-\frac{3}{2}

C.

\frac{3}{2}

D.

2

Correct answer is C

\alpha + \beta = \frac{-b}{a}

From the equation, a = 2, b = -3 and c = 4

\alpha + \beta = \frac{-(-3)}{2} = \frac{3}{2}