Further Mathematics questions and answers

Further Mathematics Questions and Answers

Test your knowledge of advanced level mathematics with this aptitude test. This test comprises Further Maths questions and answers from past JAMB and WAEC examinations.

701.

Given that \(f(x) = 5x^{2} - 4x + 3\), find the coordinates of the point where the gradient is 6.

A.

(4,1)

B.

(4,-2)

C.

(1,4)

D.

(1,-2)

Correct answer is C

\(f(x) = 5x^{2} - 4x + 3\)

\(f'(x) = 10x - 4 = 6 \implies 10x = 10; x=1\)

When x = 1, f(x) = y = \(5(1^{2}) - 4(1) + 3 = 4\)

The coordinates are (1,4)

702.

A circle with centre (4,5) passes through the y-intercept of the line 5x - 2y + 6 = 0. Find its equation.

A.

\(x^{2} + y^{2} + 8x - 10y + 21 = 0\)

B.

\(x^{2} + y^{2} + 8x - 10y - 21 = 0\)

C.

\(x^{2} + y^{2} - 8x - 10y - 21 = 0\)

D.

\(x^{2} + y^{2} - 8x - 10y + 21 = 0\)

Correct answer is D

On the y-intercept, x=0. At this point, y = 5(0) - 2y = -6; y = 3, so the y- intercept has coordinates (0,3).

The equation of the circle is given as \((x-a)^{2} + (y-b)^{2} = r^{2}\), where (a,b) is the centre and r is the radius.

The radius of the circle through the y- intercept = \(\sqrt{(4-0)^{2} + (5-3)^{2}} = \sqrt{20}\)

The equation of the circle is \((x-4)^{2} + (y-5)^{2} = 20\); expanding, we have

\(x^{2} + y^{2} + 8x - 10y + 21 = 0\)

703.

Given that \(\sin x = \frac{5}{13}\) and \(\sin y = \frac{8}{17}\), where x and y are acute, find \(\cos(x+y)\).

A.

\(\frac{130}{221}\)

B.

\(\frac{140}{221}\)

C.

\(\frac{140}{204}\)

D.

\(\frac{220}{23}\)

Correct answer is B

\(\cos(x+y) = \cos x\cos y - \sin x\sin y\)

Given \(\sin\) of an angle implies we have the value of the opposite and hypotenuse of the right-angled triangle. We find the adjacent side using Pythagoras' theorem.

\(Adj^{2} = Hyp^{2} - Opp^{2}\)

For triangle with angle x, \(adj = \sqrt{13^{2} - 5^{2}} = \sqrt{144} = 12\)

For triangle with angle y, \(adj = \sqrt{17^{2} - 8^{2}} = \sqrt{225} = 15\)

\(\therefore \cos x = \frac{12}{13}; \cos y = \frac{15}{17}\)

\(\cos(x+y) = (\frac{12}{13}\times\frac{15}{17}) - (\frac{5}{13}\times\frac{8}{17}) = \frac{180}{221} - \frac{40}{221}\)

= \(\frac{140}{221}\)

704.

If \(B = \begin{pmatrix}  2 & 5  \\  1 & 3  \end{pmatrix}\), find \(B^{-1}\).

A.

\(A = \begin{pmatrix} -3 & -5 \\ 1 & 2 \end{pmatrix}\)

B.

\(A = \begin{pmatrix} 3 & -5 \\ 1 & 2 \end{pmatrix}\)

C.

\(A = \begin{pmatrix} 3 & -5 \\ -1 & 2 \end{pmatrix}\)

D.

\(A = \begin{pmatrix} -3 & 5 \\ 1 & -2 \end{pmatrix}\)

Correct answer is C

\(B.B^{-1} = 1\), let \(B^{-1} = \begin{pmatrix}  a & b  \\  c & d  \end{pmatrix}\)

\(\begin{pmatrix}  2 & 5  \\  1 & 3  \end{pmatrix}\)\(\begin{pmatrix}  a & b  \\  c & d  \end{pmatrix}\) = \(\begin{pmatrix}  1 & 0  \\  0 & 1  \end{pmatrix}\)

Multiplying \(B \times B^{-1}\), we have the following equations:

\(2a+5c = 1......... (1)\); \(a+3c = 0 ........(2)\)

\(2b+5d = 0 ..........(3)\); \(b+3d = 1..........(4)\)

Solving the equations simultaneously, we have

\(a = 3; b = -5; c = -1; d = 2 \implies B^{-1} = \begin{pmatrix}  3 & -5  \\  -1 & 2  \end{pmatrix}\)

705.

\(\alpha\) and \(\beta\) are the roots of the equation \(2x^{2} - 3x + 4 = 0\). Find \(\frac{\alpha}{\beta} + \frac{\beta}{\alpha}\)

A.

\(\frac{-9}{8}\)

B.

\(\frac{-7}{8}\)

C.

\(\frac{7}{8}\)

D.

\(\frac{9}{8}\)

Correct answer is B

\(\frac{\alpha}{\beta} + \frac{\beta}{\alpha} = \frac{\alpha^{2} + \beta^{2}}{\alpha\beta}\)

\(\alpha + \beta = \frac{-b}{a}\); \(\alpha\beta = \frac{c}{a}\)

\(\alpha^{2} + \beta^{2} = (\alpha + \beta)^{2} - 2(\alpha\beta)\)

From the equation, a = 2, b = -3, c =4

\(\alpha + \beta = \frac{-(-3)}{2} = \frac{3}{2}\)

\(\alpha\beta = \frac{4}{2} = 2\)

\(\alpha^{2} + \beta^{2} = (\frac{3}{2})^{2} - 2(2)) = \frac{9}{4} - 4 = \frac{-7}{4}\)

\(\implies \frac{\alpha}{\beta} + \frac{\beta}{\alpha} = \frac{\frac{-7}{4}}{2} = \frac{-7}{8}\)