Further Mathematics questions and answers

Further Mathematics Questions and Answers

Test your knowledge of advanced level mathematics with this aptitude test. This test comprises Further Maths questions and answers from past JAMB and WAEC examinations.

66.

Find the coefficient of x\(^2\)in the binomial expansion of \((x + \frac{2}{x^2})^5\)

A.

10

B.

40

C.

32

D.

80

Correct answer is A

\((x + \frac{2}{x^2})^5\)

n = 5,  r = 4,  p = x  and q = \(\frac{2}{x^2}\)  

5C\(_4\)x\(^4\) (\(\frac{2}{x^2}\))1 = 5C\(_4\) \(\frac{2x^4}{x^2}\) 

5C\(_4\) 2x\(^2\) = \(\frac{5!}{[5-4]!4!}\) * 2x\(^2\)

\(\frac{5*4!}{4!} * 2x^2\) = 5 * 2x\(^2\) = 10x\(^2\)

The coefficient is 10.

67.

Evaluate \(4p_2 + 4C_2 - 4p_3\)

A.

18

B.

6

C.

-6

D.

-18

Correct answer is C

\(4p_2 + 4C_2 - 4p_3\)

\(np_r = \frac{n!}{[n-r]!} and  nC_r = \frac{n!}{[n-r]!r!} \)

= \(\frac{4!}{[4-2]!} + \frac{4!}{[4-2]!2!} - \frac{4!}{[4-3]!} = \frac{4!}{2!} + \frac{4!}{2!2!} - \frac{4!}{1!}\)

= \(\frac{4*3*2!}{2!} + \frac{4*3*2!}{2!2!} - \frac{4*3*2*1}{1!}\)

12 + 6 - 24 = -6

68.

A linear transformation T is defined by T: (x,y) → (3x - y, x + 4y). Find the image of (2, -1) under T.

A.

(7, -2)

B.

(5, -2)

C.

(-2, 7)

D.

(-7, 2)

Correct answer is A

Let (x1, y1) be the image of the point (x, y) under the given transformations.
x1 = 3x - y
y1 = x + 4y
\(\begin{vmatrix} 3 & -1 \\ 1 & 4 \end{vmatrix} \begin{vmatrix} x \\ y = \end{vmatrix}  \begin{vmatrix} x_1 \\ y_1 \end{vmatrix}\)

\(\begin{vmatrix} 3 & -1 \\ 1 & 4 \end{vmatrix} \begin{vmatrix} 2 \\ 1 = \end{vmatrix}  \begin{vmatrix} 7 \\ -2 \end{vmatrix}\)

69.

Given \(\begin{vmatrix} 2 & -3 \\ 1 & 4 \end{vmatrix} \begin{vmatrix} -6 \\ k \end{vmatrix}  \begin{vmatrix} 3 \\ -26 \end{vmatrix} = 15\). Solve for k.

A.

-8

B.

-5

C.

-4

D.

-3

Correct answer is B

\(\begin{vmatrix} 2 & -3 \\ 1 & 4 \end{vmatrix} \begin{vmatrix} -6 \\ k \end{vmatrix}  \begin{vmatrix} 3 \\ -26 \end{vmatrix} = 15\)

 

\(\begin{vmatrix} 2[-6] & - 3k \\ 1[-6] & + 4k \end{vmatrix} = \begin{vmatrix} 3 \\ -26 \end{vmatrix}\)

 

\(\begin{vmatrix} -12 & - 3k \\ -6 & + 4k \end{vmatrix} = \begin{vmatrix} 3 \\ -26 \end{vmatrix}\)

 

-12 - 3k = 3

-3k = 3 + 12

k = \(\frac{15}{-3}\)

k = -5

70.

Evaluate\({1_0^∫} x^2(x^3+2)^3\)

A.

\(\frac{56}{12}\)

B.

\(\frac{65}{12}\)

C.

12

D.

65

Correct answer is B

\({1_0^∫} x^2(x^3+2)^3\)dx

let \( u = x^3 + 2, du = 3x^2dx\)

when x = 1,  u = 3

when x = 0,  u = 2

dx = \(\frac{du}{3x^2}\)

\({3_2^∫}\) \(\frac{x^2[u]^3}{3x^2}\)

\({3_2^∫}\) \(\frac{u^3}{3}\) du 

= \(\frac{u^4}{3*4}\)\(_2\)3

\(\frac{1}{12} [u^4]\)\(_2\)3

\(\frac{1}{12} [3^4 - 2^4]\)

\(\frac{1}{12}[81 - 16]\)

\(\frac{65}{12}\)