A linear transformation T is defined by T: (x,y) → (...
A linear transformation T is defined by T: (x,y) → (3x - y, x + 4y). Find the image of (2, -1) under T.
(7, -2)
(5, -2)
(-2, 7)
(-7, 2)
Correct answer is A
Let (x1, y1) be the image of the point (x, y) under the given transformations.
x1 = 3x - y
y1 = x + 4y
\(\begin{vmatrix} 3 & -1 \\ 1 & 4 \end{vmatrix} \begin{vmatrix} x \\ y = \end{vmatrix} \begin{vmatrix} x_1 \\ y_1 \end{vmatrix}\)
\(\begin{vmatrix} 3 & -1 \\ 1 & 4 \end{vmatrix} \begin{vmatrix} 2 \\ 1 = \end{vmatrix} \begin{vmatrix} 7 \\ -2 \end{vmatrix}\)
In how many ways can 9 people be seated on a bench if only 3 places are available? ...
If \(\frac{1}{5^{-y}} = 25(5^{4-2y})\), find the value of y....
Simplify \(8^{n} \times 2^{2n} \div 4^{3n}\)...
Given that P = { x: 0 ≤ x ≤ 36, x is a factor of 36 divisible by 3} and Q = { x...
If g(x) = √(1-x\(^2\)), find the domain of g(x)...
If \(\sin\theta = \frac{3}{5}, 0° < \theta < 90°\), evaluate \(\cos(180 - \theta)\)....
Find the domain of \(g(x) = \frac{4x^{2} - 1}{\sqrt{9x^{2} + 1}}\)...
Find the fourth term of the binomial expansion of \((x - k)^{5}\) in descending powers of x....
If \(\frac{^{n}C_{3}}{^{n}P_{2}} = 1\), find the value of n....