A linear transformation T is defined by T: (x,y) → (...
A linear transformation T is defined by T: (x,y) → (3x - y, x + 4y). Find the image of (2, -1) under T.
(7, -2)
(5, -2)
(-2, 7)
(-7, 2)
Correct answer is A
Let (x1, y1) be the image of the point (x, y) under the given transformations.
x1 = 3x - y
y1 = x + 4y
\(\begin{vmatrix} 3 & -1 \\ 1 & 4 \end{vmatrix} \begin{vmatrix} x \\ y = \end{vmatrix} \begin{vmatrix} x_1 \\ y_1 \end{vmatrix}\)
\(\begin{vmatrix} 3 & -1 \\ 1 & 4 \end{vmatrix} \begin{vmatrix} 2 \\ 1 = \end{vmatrix} \begin{vmatrix} 7 \\ -2 \end{vmatrix}\)
Age in years 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 Frequency 6 8 14 10 12 ...
The table shows the mark obtained by students in a test. Marks 1 2 3 4 5 Frequency ...
Calculate the distance between points (-2, -5) and (-1, 3) ...
Evaluate \(\int_{1}^{2} (2 + 2x - 3x^{2}) \mathrm {d} x\)....
If 2i +pj and 4i -2j are perpendicular, find the value of p. ...
A linear transformation T is defined by T: (x,y) → (3x - y, x + 4y). Find the image of (2, -1) ...