\(\frac{56}{12}\)
\(\frac{65}{12}\)
12
65
Correct answer is B
\({1_0^∫} x^2(x^3+2)^3\)dx
let \( u = x^3 + 2, du = 3x^2dx\)
when x = 1, u = 3
when x = 0, u = 2
dx = \(\frac{du}{3x^2}\)
\({3_2^∫}\) \(\frac{x^2[u]^3}{3x^2}\)
\({3_2^∫}\) \(\frac{u^3}{3}\) du
= \(\frac{u^4}{3*4}\)\(_2\)3
\(\frac{1}{12} [u^4]\)\(_2\)3
\(\frac{1}{12} [3^4 - 2^4]\)
\(\frac{1}{12}[81 - 16]\)
\(\frac{65}{12}\)
Given that \(\log_{2} y^{\frac{1}{2}} = \log_{5} 125\), find the value of y...
Given that \(y^2 + xy = 5,find \frac{dy}{dx}\)...
Factorize completely: \(x^{2} + x^{2}y + 3x - 10y + 3xy - 10\)....
The gradient of a curve at the point (-2, 0) is \(3x^{2} - 4x\). Find the equation of the curve....
If α and β are roots of x\(^2\) + mx - n = 0, where m and n are constants, form the ...