\(\frac{56}{12}\)
\(\frac{65}{12}\)
12
65
Correct answer is B
\({1_0^∫} x^2(x^3+2)^3\)dx
let \( u = x^3 + 2, du = 3x^2dx\)
when x = 1, u = 3
when x = 0, u = 2
dx = \(\frac{du}{3x^2}\)
\({3_2^∫}\) \(\frac{x^2[u]^3}{3x^2}\)
\({3_2^∫}\) \(\frac{u^3}{3}\) du
= \(\frac{u^4}{3*4}\)\(_2\)3
\(\frac{1}{12} [u^4]\)\(_2\)3
\(\frac{1}{12} [3^4 - 2^4]\)
\(\frac{1}{12}[81 - 16]\)
\(\frac{65}{12}\)
Evaluate \(\int_{1}^{2} [\frac{x^{3} - 1}{x^{2}}] \mathrm {d} x\)...
The table shows the distribution of marks obtained by some students in a test Marks 0-9 10-...
Given that \(f(x) = 5x^{2} - 4x + 3\), find the coordinates of the point where the gradient is 6....
Evaluate \(\int_{-1}^{1} (x + 1)^{2}\mathrm {d} x\). ...
Find the coefficient of \(x^{4}\) in the binomial expansion of \((1 - 2x)^{6}\)....
Evaluate \(\cos 75°\), leaving the answer in surd form....
If \(g(x) = \frac{x + 1}{x - 2}, x \neq -2\), find \(g^{-1}(2)\)....