18
6
-6
-18
Correct answer is C
\(4p_2 + 4C_2 - 4p_3\)
\(np_r = \frac{n!}{[n-r]!} and nC_r = \frac{n!}{[n-r]!r!} \)
= \(\frac{4!}{[4-2]!} + \frac{4!}{[4-2]!2!} - \frac{4!}{[4-3]!} = \frac{4!}{2!} + \frac{4!}{2!2!} - \frac{4!}{1!}\)
= \(\frac{4*3*2!}{2!} + \frac{4*3*2!}{2!2!} - \frac{4*3*2*1}{1!}\)
12 + 6 - 24 = -6
(\(\frac{3√6}{√5} + \frac{√54}{3√5}\))\(^{-1}\)...
Solve: 4sin\(^2\)θ + 1 = 2, where 0º < θ < 180º...
Simplify \(\frac{\sqrt{3} + \sqrt{48}}{\sqrt{6}}\)...
Given that \(f(x) = 2x^{2} - 3\) and \(g(x) = x + 1\) where \(x \in R\). Find g o f(x)....
If \(\log_{9} 3 + 2x = 1\), find x....
Evaluate: \(^{lim}_{x \to 1} \begin{pmatrix} \frac{1 - x}{x^2 - 3x + 2} \end {pmatrix}\)...