Test your knowledge of advanced level mathematics with this aptitude test. This test comprises Further Maths questions and answers from past JAMB and WAEC examinations.
(−14, 34)
(14, 34
(−12, 32)
(−12, −32)
Correct answer is B
2x2 + 2y2 - x - 3y - 41
standard equation of circle
(x-a)2 + (x-b)2 = r2
General form of equation of a circle.
x2 + y2 + 2gx + 2fy + c = 0
a = -g, b = -f., r2 = g2 + f2 - c
the centre of the circle is (a,b)
comparing the equation with the general form of equation of circle.
2x2 + 2y2 - x - 3y - 41
= x2 + y2 + 2gx + 2fy + c
2x2 + 2y2 - x - 3y - 41 = 0
divide through by 2
g = −14 ; 2g = −12
f = −34 ; 2f = −32
a = -g → - −14 ; = 14
b = -f → - (\frac{-3}{4}\) = (\frac{3}{4}\)
therefore the centre is (14, 34)
Find the range of values of x for which 2x2 + 7x - 15 ≥ 0.
x ≤ -5 or x ≥ 32
x ≥ -5 or x ≤32
-5 ≤ x ≤ 35
35 ≤ x ≤ -5
Correct answer is A
2x2 + 7x - 15 ≥ 0
2x2 -3x + 10x - 15 ≥ 0
x(2x - 3) + 5(2x - 3) ≥ 0
(x+5)(2x-3) ≥ 0
the points on x-axis where the graph ≥ 0
x ≤ -5 or x ≥ 32
Solve: 4sin2θ + 1 = 2, where 0º < θ < 180º
60º 0r 120º
30º 0r 150º
30º 0r 120º
60º 0r 150º
Correct answer is B
4sin2θ + 1 = 2
4sin2θ = 2 - 1
4sin2θ = 1
\sqrt sin^2θ = \sqrt \frac{1}{4}
sinθ = \frac{1}{2}
θ = sin^{-1} \frac{1}{2}
θ = 30º 0r 150º