Further Mathematics questions and answers

Further Mathematics Questions and Answers

Test your knowledge of advanced level mathematics with this aptitude test. This test comprises Further Maths questions and answers from past JAMB and WAEC examinations.

46.

The gradient of a function at any point (x,y) 2x - 6. If the function passes through (1,2), find the function.

A.

x\(^2\) - 6x - 5

B.

x\(^2\) - 6x + 5

C.

x\(^2\) - 6x - 3

D.

x\(^2\) - 6x + 7

Correct answer is D

dy/dx = 2x - 6

y = ∫ 2x - 6

y = \(\frac{2x^2}{2} - 6 + c\)
y = x\(^2\) - 6x + c
passes through (1,2)
2 = 1\(^2\) - 6(1) + c
2 = 1 - 6 + c
c = 7
y = x\(^2\) - 6x + c

y = x\(^2\) -  6x + 7

47.

The equation of a circle is given as 2x\(^2\) + 2y\(^2\) - x - 3y - 41 = 0. Find the coordinates of its centre.

A.

(\(\frac{-1}{4}\), \(\frac{3}{4}\))

B.

(\(\frac{1}{4}\), \(\frac{3}{4}\)

C.

(\(\frac{-1}{2}\), \(\frac{3}{2}\))

D.

(\(\frac{-1}{2}\), \(\frac{-3}{2}\))

Correct answer is B

2x\(^2\) + 2y\(^2\) - x - 3y - 41

standard equation of circle
(x-a)\(^2\) + (x-b)\(^2\) = r\(^2\)
General form of equation of a circle.
x\(^2\) + y\(^2\) + 2gx + 2fy + c = 0
a = -g, b = -f., r2 = g2 + f2 - c
the centre of the circle is (a,b)
comparing the equation with the general form of equation of circle.
2x\(^2\) + 2y\(^2\) - x - 3y - 41

= x\(^2\) + y\(^2\) + 2gx + 2fy + c
2x\(^2\) + 2y\(^2\) - x - 3y - 41 = 0
divide through by 2

g = \(\frac{-1}{4}\) ; 2g = \(\frac{-1}{2}\)

f = \(\frac{-3}{4}\) ; 2f = \(\frac{-3}{2}\)

a = -g  → - \(\frac{-1}{4}\) ; = \(\frac{1}{4}\)

b = -f → - (\frac{-3}{4}\) = (\frac{3}{4}\)

therefore the centre is (\(\frac{1}{4}\), \(\frac{3}{4}\))

49.

Find the range of values of x for which 2x\(^2\) + 7x - 15 ≥ 0.

A.

x ≤ -5 or x ≥ \(\frac{3}{2}\)

B.

x ≥ -5 or x ≤\(\frac{3}{2}\)

C.

-5 ≤ x ≤ \(\frac{3}{5}\)

D.

\(\frac{3}{5}\) ≤ x ≤ -5

Correct answer is A

2x\(^2\) + 7x - 15 ≥ 0

2x\(^2\) -3x + 10x - 15 ≥ 0
x(2x - 3) + 5(2x - 3) ≥ 0
(x+5)(2x-3) ≥ 0
the points on x-axis where the graph ≥ 0

x ≤ -5 or x ≥ \(\frac{3}{2}\)

50.

Solve: 4sin\(^2\)θ + 1 = 2, where 0º < θ < 180º

A.

60º 0r 120º

B.

30º 0r 150º

C.

30º 0r 120º

D.

60º 0r 150º

Correct answer is B

4sin\(^2\)θ + 1 = 2

4sin\(^2\)θ  = 2 - 1

4sin\(^2\)θ = 1

\(\sqrt sin^2θ\) = \(\sqrt \frac{1}{4}\)

sinθ = \(\frac{1}{2}\)

θ = \(sin^{-1} \frac{1}{2}\)

θ = 30º 0r 150º