\({x : x \in R, x = \frac{1}{2}}\)
\(x: x \in R, x\neq \frac{1}{3}\)
\(x : x \in R, x = \frac{1}{3}\)
\(x: x \in R\)
Correct answer is D
The domain of a function refers to the regions where the function is defined or has a value on a particular region.
\(\frac{4x^{2} - 1}{\sqrt{9x^{2} + 1}}\) has a domain defined on all set of real numbers because the function is defined on the set of real numbers when the denominator \(\sqrt{9x^{2} + 1} \geq 0\).
\(\sqrt{9x^{2} + 1} \geq 0 \implies 9x^{2} + 1 \geq 0\) which because of the square sign has a value for all values of x, be it negative or positive.
Given that \(P = \begin{pmatrix} 3 & 4 \\ 2 & x \end{pmatrix}; Q = \begin{pmatrix} 1 & 3...
Find the sum of the first 20 terms of the sequence -7-3, 1, ...... ...
Find \(\lim\limits_{x \to 3} (\frac{x^{3} + x^{2} - 12x}{x^{2} - 9})\)...
A particle is acted upon by two forces 6N and 3N inclined at an angle of 120° to each other. Fin...
If \(T = \begin{pmatrix} -2 & -5 \\ 3 & 8 \end{pmatrix}\), find \(T^{-1}\), the inverse of T...
If \(\begin{vmatrix} 3 & x \\ 2 & x - 2 \end{vmatrix} = -2\), find the value of x....
Simplify ( \(\frac{1}{2 - √3}\) + \(\frac{2}{2 + √3}\) )\(^{-1}\)...