6
5
4
3
Correct answer is D
\((\sqrt{x} + 1) * (\sqrt{x} - 1) = 4 \implies \frac{\sqrt{x} + 1}{\sqrt{x} - 1} + \frac{\sqrt{x} - 1}{\sqrt{x} + 1} = 4\)
\(\frac{(\sqrt{x} + 1)(\sqrt{x} + 1) + (\sqrt{x} - 1)(\sqrt{x} - 1)}{(\sqrt{x} - 1)(\sqrt{x} + 1)}\)
= \(\frac{x + 2\sqrt{x} + 1 + x - 2\sqrt{x} + 1}{x - 1} \implies \frac{2x + 2}{x - 1} = 4\)
\(2x + 2 = 4x - 4 \therefore 4x - 2x = 2x = 2 + 4= 6\)
\(x = 3\)
In which of the following series can be the formula S = \(\frac{a}{1 - r}\) where a is the firs...
Find the range of values of x for which \(x^{2} + 4x + 5\) is less than \(3x^{2} - x + 2\)...
Find the equation of a circle with centre (-3, -8) and radius \(4\sqrt{6}\)...
Given that \(\log_{3}(x - y) = 1\) and \(\log_{3}(2x + y) = 2\), find the value of x...