Further Mathematics questions and answers

Further Mathematics Questions and Answers

Test your knowledge of advanced level mathematics with this aptitude test. This test comprises Further Maths questions and answers from past JAMB and WAEC examinations.

611.

Find an expression for y given that \(\frac{\mathrm d y}{\mathrm d x} = x^{2}\sqrt{x}\)

A.

\(\frac{1x^{\frac{2}{7}}}{7} + c\)

B.

\(\frac{2x^{\frac{3}{2}}}{7} + c\)

C.

\(\frac{2x^{\frac{7}{2}}}{7} + c\)

D.

\(\frac{1x^{\frac{7}{2}}}{7} + c\)

Correct answer is C

\(x^{2}\sqrt{x} \equiv x^{2}. x^{\frac{1}{2}} = x^{\frac{5}{2}}\)

\(\implies \frac{\mathrm d y}{\mathrm d x} = x^{\frac{5}{2}}\)

\(y = \int x^{\frac{5}{2}} \mathrm d x\)

= \(\frac{x^{\frac{5}{2} + 1}}{\frac{5}{2} + 1} + c\)

= \(\frac{2x^{\frac{7}{2}}}{7} + c\)

612.

The radius of a circle increases at a rate of 0.5\(cms^{-1}\). Find the rate of change in the area of the circle with radius 7cm. \([\pi = \frac{22}{7}]\)

A.

11\(cm^{2}s^{-1}\)

B.

22\(cm^{2}s^{-1}\)

C.

33\(cm^{2}s^{-1}\)

D.

44\(cm^{2}s^{-1}\)

Correct answer is B

With radius = 7cm, \(Area = \pi r^{2} = \frac{22}{7} \times 7^{2}\)

= \(154cm^{2}\)

The next second, radius = 7.5cm, \(Area = \pi r^{2} = \frac{22}{7} \times 7.5^{2}\)

= \(176cm^{2}\)

Change in area = \((176 - 154)cm^{2} = 22cm^{2}\)

\(\therefore\) The rate of increase = \(22cm^{2}s^{-1}\)

OR

\(Area (A) = \pi r^{2} \implies \frac{\mathrm d A}{\mathrm d r} = 2\pi r\)

Given \(\frac{\mathrm d r}{\mathrm d t} = 0.5\)

\(\frac{\mathrm d A}{\mathrm d r} \times \frac{\mathrm d r}{\mathrm d t} = \frac{\mathrm d A}{\mathrm d t}\)

\(\frac{\mathrm d A}{\mathrm d t} = 2\pi r \times 0.5 = 2 \times \frac{22}{7} \times 7 \times 0.5\)

= \(22cm^{2}s^{-1}\)

613.

Find the minimum value of \(y = 3x^{2} - x - 6\).

A.

\(-6\frac{1}{6}\)

B.

\(-6\frac{1}{12}\)

C.

\(-6\)

D.

\(0\)

Correct answer is B

\(3x^{2} - x - 6 = y\)

\(a = 3, b = -1, c = -6\)

Minimum value of x = \(\frac{-b}{2a} = \frac{-(-1)}{6} = \frac{1}{6}\)

\(y(\frac{1}{6}) = 3(\frac{1}{6}^{2}) - \frac{1}{6} - 6 = -6\frac{1}{12}\)

614.

Find the gradient to the normal of the curve \(y = x^{3} - x^{2}\) at the point where x = 2.

A.

\(\frac{-1}{8}\)

B.

\(\frac{1}{8}\)

C.

\(\frac{-1}{24}\)

D.

\(1\)

Correct answer is A

Given : \(y = x^{3} - x^{2}\)

\(\frac{\mathrm d y}{\mathrm d x} = 3x^{2} - 2x\)

\(\therefore  \text{The gradient of the tangent at point (x = 2)} = 3(2^{2}) - 2(2) \)

= \(12 - 4 = 8\)

Recall, the tangent and the normal are perpendicular to each other and the product of the gradients of perpendicular lines = -1.

\(\implies \text{the gradient of the normal} = \frac{-1}{8}\)

615.

Find \(\lim\limits_{x \to 3} \frac{2x^{2} + x - 21}{x - 3}\).

A.

0

B.

1

C.

7

D.

13

Correct answer is D

\(\lim\limits_{x \to 3} \frac{2x^{2} + x - 21}{x - 3}\)

\(2x^{2} + x - 21 = 2x^{2} - 6x + 7x - 21 \) (by factorizing)

= \((2x + 7)(x - 3)\)

\(\therefore \lim\limits_{x \to 3} \frac{2x^{2} + x - 21}{x - 3} \equiv \lim\limits_{x \to 3} \frac{(2x+7)(x-3)}{x-3}\)

\(\lim\limits_{x \to 3} (2x + 7)  = 2(3) + 7 = 13\)