11\(cm^{2}s^{-1}\)
22\(cm^{2}s^{-1}\)
33\(cm^{2}s^{-1}\)
44\(cm^{2}s^{-1}\)
Correct answer is B
With radius = 7cm, \(Area = \pi r^{2} = \frac{22}{7} \times 7^{2}\)
= \(154cm^{2}\)
The next second, radius = 7.5cm, \(Area = \pi r^{2} = \frac{22}{7} \times 7.5^{2}\)
= \(176cm^{2}\)
Change in area = \((176 - 154)cm^{2} = 22cm^{2}\)
\(\therefore\) The rate of increase = \(22cm^{2}s^{-1}\)
OR
\(Area (A) = \pi r^{2} \implies \frac{\mathrm d A}{\mathrm d r} = 2\pi r\)
Given \(\frac{\mathrm d r}{\mathrm d t} = 0.5\)
\(\frac{\mathrm d A}{\mathrm d r} \times \frac{\mathrm d r}{\mathrm d t} = \frac{\mathrm d A}{\mathrm d t}\)
\(\frac{\mathrm d A}{\mathrm d t} = 2\pi r \times 0.5 = 2 \times \frac{22}{7} \times 7 \times 0.5\)
= \(22cm^{2}s^{-1}\)
Find the derivative of \(\sqrt[3]{(3x^{3} + 1}\) with respect to x....
Find the inverse of \(\begin{pmatrix} 3 & 5 \\ 1 & 2 \end{pmatrix}\)...
A linear transformation T is defined by T: (x,y) → (3x - y, x + 4y). Find the image of (2, -1) ...
Find the least value of n for which \(^{3n}C_{2} > 0, n \in R\)...
Find the 3rd term of \((\frac{x}{2} - 1)^{8}\) in descending order of x....
Simplify \(\frac{\sqrt{3}}{\sqrt{3} -1} + \frac{\sqrt{3}}{\sqrt{3} + 1}\)...
Given that \(r = 3i + 4j\) and \(t = -5i + 12j\), find the acute angle between them....