Further Mathematics questions and answers

Further Mathematics Questions and Answers

Test your knowledge of advanced level mathematics with this aptitude test. This test comprises Further Maths questions and answers from past JAMB and WAEC examinations.

621.

If \(P = \begin{pmatrix} 1 & 2 \\ 5 & 1 \end{pmatrix}\) and \(Q = \begin{pmatrix} 0 & 1 \\ 1 & 3 \end{pmatrix}\), find PQ.

A.

\(\begin{pmatrix} 5 & 1 \\ 16 & 5 \end{pmatrix}\)

B.

\(\begin{pmatrix} 2 & 16 \\ 1 & 10 \end{pmatrix}\)

C.

\(\begin{pmatrix} 2 & 7 \\ 1 & 8 \end{pmatrix}\)

D.

\(\begin{pmatrix} 2 & 5 \\ -1 & -8 \end{pmatrix}\)

Correct answer is C

\(\begin{pmatrix} 1 & 2 \\ 5 & 1 \end{pmatrix} \begin{pmatrix} 0 & 1 \\ 1 & 3 \end{pmatrix}\)

= \(\begin{pmatrix} 1\times 0 + 2\times 1 & 1\times 1 + 2\times3 \\ 5\times0 + 1\times1 &  5\times1 + 1\times 3 \end{pmatrix}\)

= \(\begin{pmatrix} 2 & 7 \\ 1 & 8 \end{pmatrix}\)

622.

If \(\begin{vmatrix}  m-2 & m+1 \\ m+4 & m-2 \end{vmatrix} = -27\), find the value of m.

A.

\(3\frac{8}{9}\)

B.

\(3\)

C.

\(2\frac{1}{2}\)

D.

\(2\)

Correct answer is B

\(\begin{vmatrix} m-2 & m+1 \\ m+4 & m-2 \end{vmatrix} = -27\)

\((m^{2} - 4m + 4) - (m^{2} + 5m + 4) = -27\)

\(-9m = -27 \implies m = 3\)

623.

Given that \(-6, -2\frac{1}{2}, ..., 71\) is a linear sequence , calculate the number of terms in the sequence. 

A.

20

B.

21

C.

22

D.

23

Correct answer is D

\(T_{n} = a + (n - 1)d\) (for a linear or arithmetic progression)

Given: \(T_{n} = 71, a = -6, d = -2\frac{1}{2} - (-6) = 3\frac{1}{2}\)

\(\implies 71 = -6 + (n - 1)\times 3\frac{1}{2}\)

\(71 = -6 + 3\frac{1}{2}n - 3\frac{1}{2} = -9\frac{1}{2} + 3\frac{1}{2}n\)

\(71 + 9\frac{1}{2} = 3\frac{1}{2}n  \implies  n = \frac{80\frac{1}{2}}{3\frac{1}{2}}\)

\(= 23\)

624.

The 3rd and 6th terms of a geometric progression (G.P.) are \(\frac{8}{3}\) and \(\frac{64}{81}\) respectively, find the common ratio.

A.

\(\frac{1}{3}\)

B.

\(\frac{2}{3}\)

C.

\(\frac{3}{4}\)

D.

\(\frac{4}{3}\)

Correct answer is B

\(T_{n} = ar^{n-1}\) (for a geometric progression)

\(T_{3} = ar^{3-1} = ar^{2} = \frac{8}{3}\)

\(T_{6} = ar^{6-1} = ar^{5} = \frac{64}{81}\)

Dividing \(T_{6}\) by \(T_{3}\),

\(\frac{ar^{5}}{ar^{2}} = \frac{\frac{64}{81}}{\frac{8}{3}} \implies r^{3} = \frac{8}{27}\)

\(\therefore r = \sqrt[3]{\frac{8}{27}} = \frac{2}{3}\)

625.

Find the fourth term in the expansion of \((3x - y)^{6}\).

A.

\(-540x^{3}y^{3}\)

B.

\(-540x^{4}y^{2}\)

C.

\(-27x^{3}y^{3}\)

D.

\(540x^{4}y^{2}\)

Correct answer is A

Listing out in order, the terms of this expansion have coefficients: \(^{6}C_{6}, ^{6}C_{5}, ^{6}C_{4}, ^{6}C_{3}, ^{6}C_{2}, ^{6}C_{1}, ^{6}C_{0}\)

The 4th term = \(^{6}C_{3}(3x)^{3}(-y)^{3}  = 20 \times 27x^{3} \times -y^{3}\)

= \(-540x^{3}y^{3}\).