0
1
7
13
Correct answer is D
\lim\limits_{x \to 3} \frac{2x^{2} + x - 21}{x - 3}
2x^{2} + x - 21 = 2x^{2} - 6x + 7x - 21 (by factorizing)
= (2x + 7)(x - 3)
\therefore \lim\limits_{x \to 3} \frac{2x^{2} + x - 21}{x - 3} \equiv \lim\limits_{x \to 3} \frac{(2x+7)(x-3)}{x-3}
\lim\limits_{x \to 3} (2x + 7) = 2(3) + 7 = 13
If g(x) = \frac{x + 1}{x - 2}, x \neq -2, find g^{-1}(2)....
Given that \frac{6x+m}{2x^{2}+7x-15} \equiv \frac{4}{x+5} - \frac{2}{2x-3}, find the value of m...
An exponential sequence (G.P.) is given by 8√2, 16√2, 32√2, ... . Find the n\(^{th...
If y = x^{2} - 6x + 11 is written in the form y = a(x - h)^{2} + k, find the value of \((a +...
Evaluate \lim \limits_{x \to 3} \frac{x^{2} - 2x - 3}{x - 3}...
The derivative of a function f with respect to x is given by \(f'(x) = 3x^{2} - \frac{4}{x^{5}}\...
Given that P = \begin{pmatrix} 4 & 9 \end{pmatrix} and \(Q = \begin{pmatrix} -1 & -2 \\ ...
The roots of the quadratic equation 2x^{2} - 5x + m = 0 are \alpha and \beta, where m is...