0
1
7
13
Correct answer is D
\(\lim\limits_{x \to 3} \frac{2x^{2} + x - 21}{x - 3}\)
\(2x^{2} + x - 21 = 2x^{2} - 6x + 7x - 21 \) (by factorizing)
= \((2x + 7)(x - 3)\)
\(\therefore \lim\limits_{x \to 3} \frac{2x^{2} + x - 21}{x - 3} \equiv \lim\limits_{x \to 3} \frac{(2x+7)(x-3)}{x-3}\)
\(\lim\limits_{x \to 3} (2x + 7) = 2(3) + 7 = 13\)
\(Simplify: \frac{log √27 - log √8}{log 3 - log 2}\)...
Solve \(\log_{2}(12x - 10) = 1 + \log_{2}(4x + 3)\)...
Simplify \(\frac{1 - 2\sqrt{5}}{2 + 3\sqrt{2}}\)....
Find the equation of the line passing through (0, -1) and parallel to the y- axis. ...
Express \(\frac{1}{1 - \sin 45°}\) in surd form. ...
If \(P = \begin{pmatrix} 1 & 2 \\ 5 & 1 \end{pmatrix}\) and \(Q = \begin{pmatrix} 0 & 1 ...
If \(y^{2} + xy - x = 0\), find \(\frac{\mathrm d y}{\mathrm d x}\)....
Evaluate \(\frac{\tan 120° + \tan 30°}{\tan 120° - \tan 60°}\)...