Find an expression for y given that \(\frac{\mathrm d y}{\mathrm d x} = x^{2}\sqrt{x}\)

A.

\(\frac{1x^{\frac{2}{7}}}{7} + c\)

B.

\(\frac{2x^{\frac{3}{2}}}{7} + c\)

C.

\(\frac{2x^{\frac{7}{2}}}{7} + c\)

D.

\(\frac{1x^{\frac{7}{2}}}{7} + c\)

Correct answer is C

\(x^{2}\sqrt{x} \equiv x^{2}. x^{\frac{1}{2}} = x^{\frac{5}{2}}\)

\(\implies \frac{\mathrm d y}{\mathrm d x} = x^{\frac{5}{2}}\)

\(y = \int x^{\frac{5}{2}} \mathrm d x\)

= \(\frac{x^{\frac{5}{2} + 1}}{\frac{5}{2} + 1} + c\)

= \(\frac{2x^{\frac{7}{2}}}{7} + c\)