Further Mathematics questions and answers

Further Mathematics Questions and Answers

Test your knowledge of advanced level mathematics with this aptitude test. This test comprises Further Maths questions and answers from past JAMB and WAEC examinations.

596.

Find the 3rd term of \((\frac{x}{2} - 1)^{8}\) in descending order of x.

A.

\(\frac{x^{7}}{8}\)

B.

\(\frac{7x^{6}}{16}\)

C.

\(\frac{7x^{5}}{4}\)

D.

\(\frac{35x^{4}}{8}\)

Correct answer is B

\((\frac{x}{2} - 1)^{8} = ^{8}C_{8}(\frac{x}{2})^{8}(-1)^{0} + ^{8}C_{7}(\frac{x}{2})^{7}(-1)^{1} + ^{8}C_{6}(\frac{x}{2})^{6}(-1)^{2} + ...\)

\(\text{The third term in the expansion =} ^{8}C_{6}(\frac{x}{2})^{6}(-1)^{2}\)

= \(\frac{8!}{6!2!}(\frac{x^{6}}{64})(1) \)

= \(28 \times \frac{x^{6}}{64} = \frac{7x^{6}}{16}\)

597.

If \(\log_{3} x = \log_{9} 3\), find the value of x.

A.

\(3^{2}\)

B.

\(3^{\frac{1}{2}}\)

C.

\(3^{\frac{1}{3}}\)

D.

\(2^{13}\)

Correct answer is B

\(\log_{3} x = \log_{9} 3  \implies \log_{3} x = \log_{9} 9^{\frac{1}{2}} = \frac{1}{2}\log_{9} 9\)

\(\log_{3} x = \frac{1}{2} \)

\(\therefore x = 3^{\frac{1}{2}}\)

598.

Solve: \(4(2^{x^2}) = 8^{x}\)

A.

(1, 2)

B.

(1, -2)

C.

(-1, 2)

D.

(-1, -2)

Correct answer is A

\(4(2^{x^2}) = 8^{x}  \equiv (2^{2})(2^{x^2}) = (2^{3})^{x}\)

\(\implies 2^{2 + x^{2}} = 2^{3x}\)

Comparing bases, we have

\(2 + x^{2} = 3x \implies x^{2} - 3x + 2 = 0\)

\(x^{2} - 2x - x + 2 = 0 \)

\(x(x - 2) - 1(x - 2) = 0\)

\((x - 1) = 0\) or \((x - 2) = 0\)

\(x = \text{1 or 2}\)

599.

Solve: \(2\cos x - 1 = 0\)

A.

\((\frac{2\pi}{3}, \frac{4\pi}{3})\)

B.

\((\frac{\pi}{6}, \frac{5\pi}{6})\)

C.

\((\frac{\pi}{5}, \frac{2\pi}{5})\)

D.

\((\frac{\pi}{3}, \frac{5\pi}{3})\)

Correct answer is D

\(2\cos x - 1 = 0 \implies 2\cos x = 1\)

\(\cos x = \frac{1}{2}\)

\(x = \cos^{-1} (\frac{1}{2})\)

= \(\frac{\pi}{3}\) = \(\frac{5\pi}{3}\)

600.

Simplify \(\frac{1 - 2\sqrt{5}}{2 + 3\sqrt{2}}\).

A.

\(14(2\sqrt{2} + 6\sqrt{5} - 4\sqrt{10})\)

B.

\(\frac{1}{14}(2 - 3\sqrt{2} - 4\sqrt{5} - 6\sqrt{10})\)

C.

\(\frac{1}{14}(3\sqrt{2} + 4\sqrt{5} - 6\sqrt{10} - 2)\)

D.

\(14(2 + 3\sqrt{2} - 6\sqrt{5} + 4\sqrt{10})\)

Correct answer is C

\(\frac{1 - 2\sqrt{5}}{2 + 3\sqrt{2}} = (\frac{1 - 2\sqrt{5}}{2 + 3\sqrt{2}})(\frac{2 - 3\sqrt{2}}{2 - 3\sqrt{2}})\)

= \(\frac{2 - 3\sqrt{2} - 4\sqrt{5} + 6\sqrt{10}}{4 - 6\sqrt{2} + 6\sqrt{2} - 18}\)

= \(\frac{2 - 3\sqrt{2} - 4\sqrt{5} + 6\sqrt{10}}{-14}\)

= \(\frac{1}{14}(3\sqrt{2} + 4\sqrt{5} - 2 - 6\sqrt{10})\) (dividing through with the minus sign)