\(\frac{-1}{8}\)
\(\frac{1}{8}\)
\(\frac{-1}{24}\)
\(1\)
Correct answer is A
Given : \(y = x^{3} - x^{2}\)
\(\frac{\mathrm d y}{\mathrm d x} = 3x^{2} - 2x\)
\(\therefore \text{The gradient of the tangent at point (x = 2)} = 3(2^{2}) - 2(2) \)
= \(12 - 4 = 8\)
Recall, the tangent and the normal are perpendicular to each other and the product of the gradients of perpendicular lines = -1.
\(\implies \text{the gradient of the normal} = \frac{-1}{8}\)
If \(Px^{2} + (P+1)x + P = 0\) has equal roots, find the values of P....
Find the fifth term in the binomial expansion of \((q + x)^7\)....
Find the minimum value of \(y = x^{2} + 6x - 12\)....
If (x - 3) is a factor of \(2x^{2} - 2x + p\), find the value of constant p....
Three forces \(F_{1} = (8 N, 300°), F_{2} = (6 N, 090°)\) and \(F_{3} = (4 N, 180°)\) ac...
Evaluate \(\int_{1}^{2} (2 + 2x - 3x^{2}) \mathrm {d} x\)....
Simplify: \(\frac{\cos 2\theta - 1}{\sin 2\theta}\)...
Simplify \(\frac{x^{3n + 1}}{x^{2n + \frac{5}{2}}(x^{2n - 3})^{\frac{1}{2}}}\)...