432
194
144
108
Correct answer is A
\((3x + 4)^{4} = ^{4}C_{0}(3x)^{0}(4)^{4} + ^{4}C_{1}(3x)^{1}(4)^{3} + ^{4}C_{2}(3x)^{2}(4)^{2} + ^{4}C_{3}(3x)^{3}(4)^{1} + ^{4}C_{4}(3x)^{4}(4)^{0}\)
\(x^{3} = ^{4}C_{3}(3x)^{3}(4) = \frac{4!}{3!1!} \times 3^{3} \times 4\)
= \(432x^{3}\)