432
194
144
108
Correct answer is A
\((3x + 4)^{4} = ^{4}C_{0}(3x)^{0}(4)^{4} + ^{4}C_{1}(3x)^{1}(4)^{3} + ^{4}C_{2}(3x)^{2}(4)^{2} + ^{4}C_{3}(3x)^{3}(4)^{1} + ^{4}C_{4}(3x)^{4}(4)^{0}\)
\(x^{3} = ^{4}C_{3}(3x)^{3}(4) = \frac{4!}{3!1!} \times 3^{3} \times 4\)
= \(432x^{3}\)
Given that \(\begin{pmatrix} 1 & -3 \\ 1 & 4 \end{pmatrix} \begin{pmatrix} -6 \\ P \end{pmat...
Given that \(P = \begin{pmatrix} 3 & 4 \\ 2 & x \end{pmatrix}; Q = \begin{pmatrix} 1 & 3...
Simplify \(\frac{1}{3}\) log8 + \(\frac{1}{3}\) log 64 - 2 log6...
A force of 30 N acts at an angle of 60° on a body of mass 6 kg initially at rest on a smooth hor...
Simplify \((1 + 2\sqrt{3})^{2} - (1 - 2\sqrt{3})^{2}\)...
Solve for x in the equation \(5^{x} \times 5^{x + 1} = 25\)...
>Evaluate: \(\int(2x + 1)^3 dx\)...