Test your knowledge of advanced level mathematics with this aptitude test. This test comprises Further Maths questions and answers from past JAMB and WAEC examinations.
Which of the following is nor a measure of central tendency?
Mean
Variance
Median
Mode
Correct answer is B
Variance is a measure of dispersion not central tendency.
Given that \(^{n}P_{r} = 90\) and \(^{n}C_{r} = 15\), find the value of r.
2
3
5
6
Correct answer is B
\(\frac{^{n}P_{r}}{^{n}C_{r}} = \frac{\frac{n!}{(n - r)!}}{\frac{n!}{(n - r)! r!}} = \frac{90}{15} = 6\)
\(\frac{n!}{(n - r)!} \times \frac{(n - r)! r!}{n!} = r! = 6\)
\(r = 3\)
19
21
23
24
Correct answer is B
\(Mean = \frac{sum of items}{total number of items}\)
\(20 = \frac{x}{8} \implies x = 160\)
The sum of the 7 nos = 160 - 17 = 143
Correct mean = \(\frac{143 + 25}{8} = \frac{168}{8} = 21\)
Find the unit vector in the direction of the vector \(-12i + 5j\)
\(\frac{-12i}{13} - \frac{5j}{13}\)
\(\frac{-1i}{13} + \frac{5j}{13}\)
\(\frac{-12i}{13} + \frac{5j}{13}\)
\(\frac{-5i}{13} + \frac{12j}{13}\)
Correct answer is C
\(\hat{n} = \frac{\overrightarrow{n}}{|n|}\)
\(\hat{n} = \frac{-12i + 5j}{\sqrt{(-12)^{2} + (5)^{2}}}\)
= \(\frac{-12i}{13} + \frac{5j}{13}\)
\(5\sqrt{3} - 3\)
\(3 - 5\sqrt{3}\)
\(5 - 3\sqrt{3}\)
\(3\sqrt{3} - 5\)
Correct answer is A
\(F = F \cos \theta i + F \sin \theta j\)
\(10N = 10 \cos 60 i + 10 \sin 60 j\)
\(6N = -6 \cos 330 i - 6 \sin 330 j\)
\(R_{x} = 10 \cos 60 - 6 \cos 330 \)
= \(10 \times \frac{1}{2} - 6 \times \frac{\sqrt{3}}{2}\)
= \(5 - 3\sqrt{3}\)