\(\frac{1}{x + 1}\)
\(\frac{1}{(x + 1)^{2}}\)
\(\frac{1 - x}{x + 1}\)
\(\frac{1 - x}{(x + 1)^{2}}\)
Correct answer is B
\(y = \frac{x}{x + 1}\)
Using quotient rule because the function is of the form \(\frac{u(x)}{v(x)}\)
\(\frac{\mathrm d y}{\mathrm d x} = \frac{v\frac{\mathrm d u}{\mathrm d x} - u\frac{\mathrm d v}{\mathrm d x}}{v^{2}}\)
\(\frac{\mathrm d y}{\mathrm d x} = \frac{(x + 1) . 1 - x . 1}{(x + 1)^{2}}\)
= \(\frac{1}{(x + 1)^{2}}\)
Find \(\lim\limits_{x \to 3} \frac{2x^{2} + x - 21}{x - 3}\)....
Given that \(x^{2} + 4x + k = (x + r)^{2} + 1\), find the value of k and r...
For what range of values of x is x\(^2\) - 2x - 3 ≤ 0...
Consider the following statements: X: Benita is polite y: Benita is neat z: Benita is intel...
Evaluate \(\int_{0}^{2} (8x - 4x^{2}) \mathrm {d} x\)....
A particle moving with a velocity of 5m/s accelerates at 2m/s\(^2\). Find the distance it cover...
Find the range of values of x for which \(2x^{2} + 7x - 15 > 0\)....