\(\frac{1}{x + 1}\)
\(\frac{1}{(x + 1)^{2}}\)
\(\frac{1 - x}{x + 1}\)
\(\frac{1 - x}{(x + 1)^{2}}\)
Correct answer is B
\(y = \frac{x}{x + 1}\)
Using quotient rule because the function is of the form \(\frac{u(x)}{v(x)}\)
\(\frac{\mathrm d y}{\mathrm d x} = \frac{v\frac{\mathrm d u}{\mathrm d x} - u\frac{\mathrm d v}{\mathrm d x}}{v^{2}}\)
\(\frac{\mathrm d y}{\mathrm d x} = \frac{(x + 1) . 1 - x . 1}{(x + 1)^{2}}\)
= \(\frac{1}{(x + 1)^{2}}\)
Express \(\frac{8 - 3\sqrt{6}}{2\sqrt{3} + 3\sqrt{2}}\) in the form \(p\sqrt{3} + q\sqrt{2}\)...
Find the axis of symmetry of the curve \(y = x^{2} - 4x - 12\)....
A curve is given by \(y = 5 - x - 2x^{2}\). Find the equation of its line of symmetry....
If \(\log_{3} x = \log_{9} 3\), find the value of x....
The gradient of a curve at the point (-2, 0) is \(3x^{2} - 4x\). Find the equation of the curve....