2
3
5
6
Correct answer is B
\(\frac{^{n}P_{r}}{^{n}C_{r}} = \frac{\frac{n!}{(n - r)!}}{\frac{n!}{(n - r)! r!}} = \frac{90}{15} = 6\)
\(\frac{n!}{(n - r)!} \times \frac{(n - r)! r!}{n!} = r! = 6\)
\(r = 3\)
If \(\sin\theta = \frac{3}{5}, 0° < \theta < 90°\), evaluate \(\cos(180 - \theta)\)....
If \(log_{y}\frac{1}{8}\) = 3, find the value of y....
If \(P = \begin{pmatrix} 1 & -2 \\ 3 & 4 \end{pmatrix}\) and \(Q = \begin{pmatrix} -2 & ...
Express \(r = (12, 210°)\) in the form \(a i + b j\)....
Given that \(a^{\frac{5}{6}} \times a^{\frac{-1}{n}} = 1\), solve for n...
Simplify ( \(\frac{1}{2 - √3}\) + \(\frac{2}{2 + √3}\) )\(^{-1}\)...
Evaluate \(\lim \limits_{x \to 3} \frac{x^{2} - 2x - 3}{x - 3}\)...
Given that \(x * y = \frac{x + y}{2}, x \circ y = \frac{x^{2}}{y}\) and \((3 * b) \circ&nb...
Given that \(P = \begin{pmatrix} 4 & 9 \end{pmatrix}\) and \(Q = \begin{pmatrix} -1 & -2 \\ ...