\(\frac{1 - y}{2y}\)
\(\frac{1 - 2y}{x}\)
\(\frac{1 - y}{x + 2y}\)
\(\frac{1}{x + 2y}\)
Correct answer is C
Given \(y^{2} + xy - x = 0\)
Using the method of implicit differentiation, we have
\(2y\frac{\mathrm d y}{\mathrm d x} + x\frac{\mathrm d y}{\mathrm d x} + y - 1 = 0\)
\(\frac{\mathrm d y}{\mathrm d x}(2y + x) = 1 - y\)
\(\frac{\mathrm d y}{\mathrm d x} = \frac{1 - y}{x + 2y}\)
Given that 2x + 3y - 10 and 3x = 2y - 11, calculate the value of (x - y). ...
If log 5(\(\frac{125x^3}{\sqrt[ 3 ] {y}}\) is expressed in the values of p, q and k respec...
Marks 2 3 4 5 6 7 8 No of students 5 7 9 6 3 6 4 The table above sho...
If (x + 1) is a factor of the polynomial \(x^{3} + px^{2} + x + 6\). Find the value of p....
If 2y\(^2\) + 7 = 3y - xy, find \(\frac{dy}{dx}\)...
If \(\log_{9} 3 + 2x = 1\), find x....
If the mean of 2, 5, (x + 1), (x + 2), 7 and 9 is 6, find the median. ...