\(\frac{1 - y}{2y}\)
\(\frac{1 - 2y}{x}\)
\(\frac{1 - y}{x + 2y}\)
\(\frac{1}{x + 2y}\)
Correct answer is C
Given \(y^{2} + xy - x = 0\)
Using the method of implicit differentiation, we have
\(2y\frac{\mathrm d y}{\mathrm d x} + x\frac{\mathrm d y}{\mathrm d x} + y - 1 = 0\)
\(\frac{\mathrm d y}{\mathrm d x}(2y + x) = 1 - y\)
\(\frac{\mathrm d y}{\mathrm d x} = \frac{1 - y}{x + 2y}\)
Evaluate \(\cos (\frac{\pi}{2} + \frac{\pi}{3})\)...
Marks 0 1 2 3 4 5 Number of candidates 6 4 8 10 9 3 The table above sh...
The position vectors of A and B are (2i + j) and (-i + 4j) respectively; find |AB|. ...
Given that \(p = 4i + 3j\), find the unit vector in the direction of p....
If \(\frac{15 - 2x}{(x+4)(x-3)}\) = \(\frac{R}{(x+4)}\) \(\frac{9}{7(x-3)}\), find the value of...