\(\frac{1 - y}{2y}\)
\(\frac{1 - 2y}{x}\)
\(\frac{1 - y}{x + 2y}\)
\(\frac{1}{x + 2y}\)
Correct answer is C
Given \(y^{2} + xy - x = 0\)
Using the method of implicit differentiation, we have
\(2y\frac{\mathrm d y}{\mathrm d x} + x\frac{\mathrm d y}{\mathrm d x} + y - 1 = 0\)
\(\frac{\mathrm d y}{\mathrm d x}(2y + x) = 1 - y\)
\(\frac{\mathrm d y}{\mathrm d x} = \frac{1 - y}{x + 2y}\)
If the midpoint of the line joining (1 - k, -4) and (2, k + 1) is (-k, k), find the value of k. ...
Find the remainder when \(5x^{3} + 2x^{2} - 7x - 5\) is divided by (x - 2)....
Face 1 2 3 4 5 6 Frequency 12 18 y 30 2y 45 Given the table abov...
Marks 2 3 4 5 6 7 8 No of students 5 7 9 6 3 6 4 The table above sho...
Find the coefficient of \(x^{4}\) in the binomial expansion of \((1 - 2x)^{6}\)....
Simplify; \(\frac{\sqrt{5} + 3}{4 - \sqrt{10}}\) ...
Find the coefficient of \(x^{3}\) in the binomial expansion of \((x - \frac{3}{x^{2}})^{9}\)....