6y - x - 29 = 0
6y + x - 31 = 0
y - 6x - 1 = 0
y - 6x + 1 = 0
Correct answer is B
y = \(3x^2 + 2\)
\(y^1 = \frac{dy}{dx} = 6x\)
Evaluating this derivative at x = 1 (since the point of interest is (1, 5)) gives us the slope of the tangent line at that point:
\(^mtangent = y^1(1) = 6 (1) = 6\)
Slope of the Normal Line \( ^mnorma l= - \frac{1}{^mtangent}\)
\(^mnormal = - \frac{1}{6}\)
\(y−y_1= ^mnormal⋅(x−x_1)\)
=y-5=-\(\frac{1}{6}(x-1)\)
=y-5=-\(\frac{1}{6}x+\frac{1}{6}\)
=y=-\(\frac{1}{6}x+\frac{1}{6}+5\)
Multiply through by 6
=6y=-x+1+30
∴6y+ x - 31=0
(\(\frac{3√6}{√5} + \frac{√54}{3√5}\))\(^{-1}\)...
Given that r = (10 N , 200º) and n = (16 N , 020º), find (3r - 2n). ...
Evaluate \(\log_{10}(\frac{1}{3} + \frac{1}{4}) + 2\log_{10} 2 + \log_{10} (\frac{3}{7})\)...
Find the radius of the circle \(2x^2 + 2y^2 - 4x + 5y + 1 = 0\)...
Simplify \(\frac{^{n}P_{5}}{^{n}C_{5}}\)...
If \(\log_{3} x = \log_{9} 3\), find the value of x....
Find the constant term in the binomial expansion of \((2x - \frac{3}{x})^{8}\)....