\(\frac{63}{65}\)
\(\frac{48}{65}\)
\(\frac{56}{65}\)
\(\frac{16}{65}\)
Correct answer is A
\(sin x = \frac{4}{5}\) and \(cos y = \frac{12}{13}\)
x is obtuse i.e sin x = + ve while cos x = + ve
\(cos x=\frac{3}{5}==>cos x=-\frac {3}{5}(obtuse)\)
\(sin y= \frac{5}{13}\)
\(sin (x-y) = sin x\) \(cos y - cos x\) \(sin y\)
\(sin(x-y) = \frac{4}{5}\times\frac{12}{13}-(-\frac{3}{5})\times\frac{5}{13}\)
\(sin(x-y) = \frac{48}{65}-(-\frac{3}{13})\)
\(\therefore sin (x-y) = \frac{48}{65} + \frac{3}{13} = \frac{63}{65}\)
The table shows the distribution of marks obtained by some students in a test Marks 0-9 10-...
Evaluate\({1_0^∫} x^2(x^3+2)^3\)...
Express (14N, 240°) as a column vector. ...
If \(f(x) = 3x^{3} + 8x^{2} + 6x + k\) and \(f(2) = 1\), find the value of k....
Face 1 2 3 4 5 6 Frequency 12 18 y 30 2y 45 Given the table above as t...
A car is moving at 120\(kmh^{-1}\). Find its speed in \(ms^{-1}\)....
Given n = 3, evaluate \(\frac{1}{(n-1)!} - \frac{1}{(n+1)!}\)...