\(\frac{6}{7}\)
\(1\frac{1}{6}\)
\(\frac{1}{7}\)
\(3\frac{1}{6}\)
Correct answer is B
\(\int^1_0 x(x^2-2)^2 dx\)
\((x^2-2)^2=x^4-2x^2-2x^2+4\)
=\(x^4-4x^2+4\)
\(x(x^2-2)^2=x(x^4-4x^2+4)\)
=\(x^5-4x^3+4x\)
\(\int^1_0 x(x^2-2)^2 dx = \int^1_0 x^5 - 4x^3 + 4x dx\)
=\((\frac{x^6}{6} - x^4+2x^2)^1_0\)
= \((\frac{(1)^6}{6} - (1)^4 +2(1)^2)-(\frac{(0)^6}{6} - (0)^4+2(0)^2)\)
=\(\frac{7}{6} - 0 =\frac{7}{6}\)
\(\therefore 1\frac{1}{6}\)
The equation of a circle is \(x^{2} + y^{2} - 8x + 9y + 15 = 0\). Find its radius....
A function \(f\) is defined by \(f :x→\frac{x + 2}{x - 3},x ≠ 3\).Find the inverse of \(f\)&...
A fair die is tossed twice. Find the probability of obtaining a 3 and a 5. ...
If \(\frac{5}{\sqrt{2}} - \frac{\sqrt{8}}{8} = m\sqrt{2}\), where m is a constant. Find m....
Evaluate \(\int_{-1}^{1} (x + 1)^{2}\mathrm {d} x\). ...
A particle moving with a velocity of 5m/s accelerates at 2m/s\(^2\). Find the distance it cover...