Test your knowledge of advanced level mathematics with this aptitude test. This test comprises Further Maths questions and answers from past JAMB and WAEC examinations.
\(q \vee \sim p\)
\(q \edge \sim p\)
\(\sim q \edge \sim p\)
\(\sim q \vee \sim p\)
Correct answer is B
No explanation has been provided for this answer.
\(\begin{pmatrix} 4 & 1 \\ -2 & 9 \end{pmatrix}\)
\(\begin{pmatrix} -4 & 1 \\ 2 & 9 \end{pmatrix}\)
\(\begin{pmatrix} -4 & 3 \\ -2 & 13 \end{pmatrix}\)
\(\begin{pmatrix} -4 & 3 \\ -2 & 9 \end{pmatrix}\)
Correct answer is D
\(\begin{pmatrix} 1 & -2 \\ 3 & 4 \end{pmatrix} \(\begin{pmatrix} -2 & 3 \\ 1 & 0 \end{pmatrix}\)
= \(\begin{pmatrix} (1 \times -2) + (-2 \times 1) & (1 \times 3) + (-2 \times 0) \\ (3 \times -2) + (4 \times 1) & (3 \times 3) + (4 \times 0) \end{pmatrix}\)
= \(\begin{pmatrix} -4 & 3 \\ -2 & 9 \end{pmatrix}\)
Express \(\frac{7\pi}{6}\) radians in degrees.
315°
210°
105°
75°
Correct answer is B
\(\pi = 180°\)
\(\frac{7\pi}{6} = \frac{7 \times 180}{6} \)
= \(210°\)
A rectangle has a perimeter of 24m. If its area is to be maximum, find its dimension.
12, 12
6, 6
4, 8
9, 3
Correct answer is B
\(Perimeter = 2(l + b) = 24\)
\(l + b = 12 \implies l = 12 - b\)
\(Area = (12 - b) \times b = 12b - b^{2}\)
\(\frac{\mathrm d A}{\mathrm d b} = 12 - 2b = 0\) (at maximum)
\(2b = 12 \implies b = 6\)
\(l = 12 - 6 = 6m\)
Evaluate \(\int_{1}^{2} (2 + 2x - 3x^{2}) \mathrm {d} x\).
-2
2
8
10
Correct answer is A
\(\int_{1}^{2} (2 + 2x - 3x^{2}) \mathrm {d} x\)
= \((2x + x^{2} - x^{3})|_{1}^{2}\)
= \((2(2) + 2^{2} - 2^{3}) - (2(1) + 1^{2} - 1^{3})\)
= \(0 - 2 = -2\)