Further Mathematics questions and answers

Further Mathematics Questions and Answers

Test your knowledge of advanced level mathematics with this aptitude test. This test comprises Further Maths questions and answers from past JAMB and WAEC examinations.

286.

Find the value of the constant k for which \(a = 4 i - k j\) and \(b = 3 i + 8 j\) are perpendicular.

A.

\(\frac{2}{3}\)

B.

2

C.

3

D.

\(\frac{3}{2}\)

Correct answer is D

For perpendicular vectors, their dot product = 0.

\((4i - kj). (3i + 8j) = 12 - 8k = 0\)

\(8k = 12 \implies k = \frac{3}{2}\)

287.

If \(p = \begin{pmatrix} 2 \\ -2 \end{pmatrix} \) and \(q = \begin{pmatrix} 3 \\ 4 \end{pmatrix}\), find \(|q - \frac{1}{2}p|\).

A.

\(2\sqrt{2}\)

B.

\(\sqrt{13}\)

C.

\(5\)

D.

\(\sqrt{29}\)

Correct answer is D

\(p = \begin{pmatrix} 2 \\ -2 \end{pmatrix} , q = \begin{pmatrix} 3 \\ 4 \end{pmatrix}\)

\(\frac{1}{2}p = \begin{pmatrix} 1 \\ -1 \end{pmatrix}\)

\(q - \frac{1}{2}p = \begin{pmatrix} 3 \\ 4 \end{pmatrix} - \begin{pmatrix} 1 \\ -1 \end{pmatrix} = \begin{pmatrix} 2 \\ 5 \end{pmatrix}\)

\(|q - \frac{1}{2}p| = \sqrt{2^{2} + 5^{2}} = \sqrt{29}\)

288.

If n items are arranged two at a time, the number obtained is 20. Find the value of n.

A.

5

B.

10

C.

15

D.

40

Correct answer is A

\(^{n}P_{2} = \frac{n!}{(n - 2)!} = 20 \)

\(\frac{n(n - 1)(n - 2)!}{(n - 2)!} = 20\)

\(n(n - 1) = 20 \implies n^{2} - n - 20 = 0\)

\(n^{2} - 5n + 4n - 20 = 0\)

\(n(n - 5) + 4(n - 5) = 0\)

\(n = \text{5 or -4}\)

\(n = 5\)

289.

A body starts from rest and moves in a straight line with uniform acceleration of \(5 ms^{-2}\). How far, in metres, does it go in 10 seconds?

A.

50 m

B.

250 m

C.

350 m

D.

500 m

Correct answer is B

\(s = ut + \frac{1}{2} at^{2}\)

\(u = 0, t = 10 secs, a = 5 ms^{-2}\)

\(s = 0 + \frac{1}{2} 5 \times 10^{2}\)

\(s = 250 m\)

290.

A test consists of 12 questions out of which candidates are to answer 10. If the first 6 are compulsory, in how many ways can each candidate select her questions?

A.

40

B.

25

C.

15

D.

10

Correct answer is C

The first 6 questions can only be selected in 1 way. 

The remaining 4 questions can be selected in \(^{6}C_{4}\) ways.

= \(\frac{6!}{(6 - 4)! 4!} = 15\)