Further Mathematics questions and answers

Further Mathematics Questions and Answers

Test your knowledge of advanced level mathematics with this aptitude test. This test comprises Further Maths questions and answers from past JAMB and WAEC examinations.

296.

The probability of Jide, Atu and Obu solving a given problem are \(\frac{1}{12}\), \(\frac{1}{6}\) and \(\frac{1}{8}\) respectively. Calculate the probability that only one solves the problem.

A.

\(\frac{1}{576}\)

B.

\(\frac{55}{576}\)

C.

\(\frac{77}{576}\)

D.

\(\frac{167}{576}\)

Correct answer is D

\(P(Jide) = \frac{1}{12}; P(\text{not Jide}) = \frac{11}{12}\)

\(P(Atu) = \frac{1}{6}; P(\text{not Atu}) = \frac{5}{6}\)

\(P(Obu) = \frac{1}{8}; P(\text{not Obu}) = \frac{7}{8}\)

\(P(\text{only one of them}) = P(\text{Jide not Atu not Obu}) + P(\text{Atu not Jide not Obu}) + P(\text{Obu not Jide not Atu})\)

= \((\frac{1}{12} \times \frac{5}{6} \times \frac{7}{8}) + (\frac{1}{6} \times \frac{11}{12} \times \frac{7}{8}) + (\frac{1}{8} \times \frac{11}{12} \times \frac{5}{6})\)

= \(\frac{35}{576} + \frac{77}{576} + \frac{55}{576}\)

= \(\frac{167}{576}\)

297.

Given that \(\overrightarrow{AB} = 5i + 3j\) and \(\overrightarrow{AC} = 2i + 5j\), find \(\overrightarrow{BC}\). 

A.

-7i - 8j

B.

-3i + 2j

C.

3i - 2j

D.

3i + 8j

Correct answer is B

\(\overrightarrow{BC} = \overrightarrow{BA} + \overrightarrow{AC}\)

\(\overrightarrow{BA} = - \overrightarrow{AB} = -(5i + 3j)\)

= \(-5i - 3j\)

\(\overrightarrow{BC} = (-5i - 3j) + (2i + 5j)\)

= \(-3i + 2j\)

298.

If events A and B are independent and \(P(A) = \frac{7}{12}\) and \(P(A \cap B) = \frac{1}{4}\), find P(B).

A.

\(\frac{3}{7}\)

B.

\(\frac{4}{7}\)

C.

\(\frac{5}{7}\)

D.

\(\frac{6}{7}\)

Correct answer is A

\(P(A) = \frac{7}{12}\)

\(P(A \cap B) = \frac{1}{4} = P(A) \times P(B)\) (Independent events)

\(\frac{1}{4} ÷ \frac{7}{12} = \frac{1}{4} \times \frac{12}{7} \)

= \(\frac{3}{7}\)

299.

If \(\begin{vmatrix} 4 & x \\ 5 & 3 \end{vmatrix} = 32\), find the value of x.

A.

4

B.

2

C.

-2

D.

-4

Correct answer is D

\(\begin{vmatrix} 4 & x \\ 5 & 3 \end{vmatrix} = 12 - 5x = 32\)

\(5x = 12 - 32 = -20\)

\(x = -4\)

300.

Express \(\frac{1}{1 - \sin 45°}\) in surd form. 

A.

\(2 + \sqrt{2}\)

B.

\(2 + \sqrt{3}\)

C.

\(2 - \sqrt{2}\)

D.

\(1 + 2\sqrt{2}\)

Correct answer is A

\(\sin 45 = \frac{\sqrt{2}}{2}\)

\(\frac{1}{1 - \sin 45} = \frac{1}{1 - \frac{\sqrt{2}}{2}}\)

\(\frac{2}{2 - \sqrt{2}} = \frac{4 + 2\sqrt{2}}{4 - 2}\)

= \(2 + \sqrt{2}\)