Further Mathematics questions and answers

Further Mathematics Questions and Answers

Test your knowledge of advanced level mathematics with this aptitude test. This test comprises Further Maths questions and answers from past JAMB and WAEC examinations.

301.

Given that \(f '(x) = 3x^{2} - 6x + 1\) and f(3) = 5, find f(x).

A.

\(f(x) = x^{3} - 3x^{2} + x + 20\)

B.

\(f(x) = x^{3} - 3x^{2} + x + 31\)

C.

\(f(x) = x^{3} - 3x^{2} + x + 2\)

D.

\(f(x) = x^{3} - 3x^{2} + x - 13\)

Correct answer is C

\(f ' (x) = 3x^{2} - 6x + 1\)

\(f(x) = \int (3x^{2} - 6x + 1) \mathrm {d} x\)

= \(x^{3} - 3x^{2} + x + c\)

\(f(3) = 5 = 3^{3} - 3(3^{2}) + 3 + c\)

\(27 - 27 + 3 + c = 5 \implies 3 + c = 5\)

\(c = 2\)

\(f(x) = x^{3} - 3x^{2} + x + 2\)

302.

The coefficient of the 5th term in the binomial expansion of \((1 + kx)^{8}\), in ascending powers of x is \(\frac{35}{8}\). Find the value of the constant k.

A.

2

B.

\(\frac{1}{2}\)

C.

\(-\frac{1}{2}\)

D.

-2

Correct answer is B

\((1 + kx)^{8} = ^{8}C_{0}(1^{8})(kx)^{0} + ^{8}C_{1}(1^{7})(kx)^{1} + ...\)

The 5th term = \(^{8}C_{5 - 1}(1^{4})(kx)^{4}\)

= \(^{8}C_{4} (kx)^{4}\)

\(\implies 70k^{4} = \frac{35}{8}\)

\(k^{4} = \frac{\frac{35}{8}}{70}\)

\(k^{4} = \frac{1}{16}\)

\(k = \frac{1}{2}\)

303.

Find the derivative of \(3x^{2} + \frac{1}{x^{2}}\)

A.

\(6x + 2x^{2}\)

B.

\(6x + \frac{1}{2x}\)

C.

\(6x - \frac{2}{x^{3}}\)

D.

\(6x - \frac{1}{2x}\)

Correct answer is C

\(y = 3x^{2} + \frac{1}{x^{2}} \equiv y = 3x^{2} + x^{-2}\)

\(\frac{\mathrm d y}{\mathrm d x} = 6x - 2x^{-3}\)

= \(6x - \frac{2}{x^{3}}\)

304.

A binary operation ,*, is defined on the set R, of real numbers by \(a * b = a^{2} + b + ab\). Find the value of x for which \(5 * x = 37\)

A.

7

B.

2

C.

-2

D.

-7

Correct answer is B

\(a * b = a^{2} + b + ab\)

\(5 * x = 5^{2} + x + 5x = 37\)

\(25 + 6x = 37 \implies 6x = 12\)

\(x = 2\)

305.

Find the locus of points which is equidistant from P(4, 5) and Q(-6, -1).

A.

3x - 5y + 13 = 0

B.

3x - 5y - 7 = 0

C.

5x - 3y + 7 = 0

D.

5x + 3y - 1 = 0

Correct answer is D

Midpoint between P(4, 5) and Q(-6, -1) = \(\frac{4 - 6}{2}, \frac{5 - 1}{2} = (-1, 2)\)

Gradient of PQ = \(\frac{5 - (-1)}{4 - (-6)} = \frac{3}{5}\)

Gradient of line perpendicular to PQ = \(\frac{-1}{\frac{3}{5}} = -\frac{5}{3}\)

\(line = \frac{y - 2}{x + 1} = \frac{-5}{3}\)

\(3y - 6 = -5x - 5\)

\(5x + 3y - 6 + 5 = 0 \implies 5x + 3y - 1 = 0\)