\(\begin{pmatrix} 4 & 1 \\ -2 & 9 \end{pmatrix}\)
\(\begin{pmatrix} -4 & 1 \\ 2 & 9 \end{pmatrix}\)
\(\begin{pmatrix} -4 & 3 \\ -2 & 13 \end{pmatrix}\)
\(\begin{pmatrix} -4 & 3 \\ -2 & 9 \end{pmatrix}\)
Correct answer is D
\(\begin{pmatrix} 1 & -2 \\ 3 & 4 \end{pmatrix} \(\begin{pmatrix} -2 & 3 \\ 1 & 0 \end{pmatrix}\)
= \(\begin{pmatrix} (1 \times -2) + (-2 \times 1) & (1 \times 3) + (-2 \times 0) \\ (3 \times -2) + (4 \times 1) & (3 \times 3) + (4 \times 0) \end{pmatrix}\)
= \(\begin{pmatrix} -4 & 3 \\ -2 & 9 \end{pmatrix}\)