Processing math: 2%
Further Mathematics questions and answers

Further Mathematics Questions and Answers

Test your knowledge of advanced level mathematics with this aptitude test. This test comprises Further Maths questions and answers from past JAMB and WAEC examinations.

281.

In the diagram above, forces P, Q and 50N are acting on a body at M. If the system is in equilibrium, calculate, in terms of θ, the magnitude of P.

A.

\frac{50 \cos \theta}{\sin (\theta + 45)°}

B.

\frac{50 \cos \theta}{\cos (\theta + 45)°}

C.

\frac{50 \sin \theta}{\cos (\theta + 45)°}

D.

\frac{50 \sin \theta}{\sin (\theta + 45)°}

Correct answer is D

No explanation has been provided for this answer.

282.

The distance between P(x, 7) and Q(6, 19) is 13 units. Find the values of x.

A.

1 or -7

B.

1 or 7

C.

1 or 11

D.

5 or -5

Correct answer is C

d = \sqrt{(x_{1} - x_{2})^{2} + (y_{1} - y_{2})^{2}}

13 = \sqrt{(x - 6)^{2} + (7 - 19)^{2}}

13^{2} = x^{2} - 12x + 36 + 144

169 = x^{2} - 12x + 180

x^{2} - 12x + 180 - 169 = 0 \implies x^{2} - 12x + 11 = 0

(x - 1)(x - 11) = 0 \implies x = \text{1 or 11}

283.

If y = x^{2} - 6x + 11 is written in the form y = a(x - h)^{2} + k, find the value of (a + h + k).

A.

-4

B.

-3

C.

0

D.

6

Correct answer is D

y = x^{2} - 6x + 11

y = a(x - h)^{2} + k

a(x - h)^{2} + k = a(x^{2} - 2hx + h^{2}) + k

ax^{2} - 2ahx + ah^{2} + k = x^{2} - 6x + 11

Comparing, we have

a = 1

2ah = 6 \implies 2h = 6; h = 3

ah^{2} + k = 11 \implies (1 \times 3^{2}) + k = 11

9 + k = 11 \implies k = 2

\therefore a + h + k = 1 + 3 + 2 = 6

284.

The initial and final velocities of an object of mass 5 kg are u = \begin{pmatrix} 1 \\ 3 \end{pmatrix} and v = \begin{pmatrix} 4 \\ 7 \end{pmatrix} respectively. Find the magnitude of its change in momentum.

A.

25

B.

15

C.

3\sqrt{7}

D.

\sqrt{10}

Correct answer is A

Change in momentum = m (v - u)

= 5 \times (\begin{pmatrix} 4 \\ 7 \end{pmatrix} - \begin{pmatrix} 1 \\ 3 \end{pmatrix})

= 5 \times \begin{pmatrix} 3 \\ 4 \end{pmatrix}

= \begin{pmatrix} 15 \\ 20 \end{pmatrix}

|m(v - u)| = \sqrt{15^{2} + 20^{2}} = \sqrt{625} = 25

285.

Find the value of the constant k for which a = 4 i - k j and b = 3 i + 8 j are perpendicular.

A.

\frac{2}{3}

B.

2

C.

3

D.

\frac{3}{2}

Correct answer is D

For perpendicular vectors, their dot product = 0.

(4i - kj). (3i + 8j) = 12 - 8k = 0

8k = 12 \implies k = \frac{3}{2}