Further Mathematics questions and answers

Further Mathematics Questions and Answers

Test your knowledge of advanced level mathematics with this aptitude test. This test comprises Further Maths questions and answers from past JAMB and WAEC examinations.

281.

Given that the straight lines \(kx - 5y + 6 = 0\) and \(mx + ny - 1 = 0\) are parallel, find a relationship connecting the constants m, n and k.

A.

5n - km = 0

B.

kn + 5m = 0

C.

5n + km = 0

D.

kn - 5m = 0

Correct answer is B

Two lines are parallel if and only if their slopes are equal.

\(kx - 5y + 6 = 0 \implies 5y = kx + 6\)

\(y = \frac{k}{5}x + \frac{6}{5}\)

\(Slope = \frac{k}{5}\)

\(mx + ny - 1 = 0 \implies ny = 1 - mx\)

\(y = \frac{1}{n} - \frac{m}{n}x\)

\(Slope = -\frac{m}{n}\)

\(Parallel \implies \frac{k}{5} = -\frac{m}{n}\)

\(-5m = kn \implies 5m + kn = 0\)

282.

In the diagram above, forces P, Q and 50N are acting on a body at M. If the system is in equilibrium, calculate, in terms of \(\theta\), the magnitude of P.

A.

\(\frac{50 \cos \theta}{\sin (\theta + 45)°}\)

B.

\(\frac{50 \cos \theta}{\cos (\theta + 45)°}\)

C.

\(\frac{50 \sin \theta}{\cos (\theta + 45)°}\)

D.

\(\frac{50 \sin \theta}{\sin (\theta + 45)°}\)

Correct answer is D

No explanation has been provided for this answer.

283.

The distance between P(x, 7) and Q(6, 19) is 13 units. Find the values of x.

A.

1 or -7

B.

1 or 7

C.

1 or 11

D.

5 or -5

Correct answer is C

\(d = \sqrt{(x_{1} - x_{2})^{2} + (y_{1} - y_{2})^{2}}\)

\(13 = \sqrt{(x - 6)^{2} + (7 - 19)^{2}}\)

\(13^{2} = x^{2} - 12x + 36 + 144\)

\(169 = x^{2} - 12x + 180\)

\(x^{2} - 12x + 180 - 169 = 0 \implies x^{2} - 12x + 11 = 0\)

\((x - 1)(x - 11) = 0 \implies x = \text{1 or 11}\)

284.

If \(y = x^{2} - 6x + 11\) is written in the form \(y = a(x - h)^{2} + k\), find the value of \((a + h + k)\).

A.

-4

B.

-3

C.

0

D.

6

Correct answer is D

\(y = x^{2} - 6x + 11\)

\( y = a(x - h)^{2} + k\)

\(a(x - h)^{2} + k = a(x^{2} - 2hx + h^{2}) + k\)

\(ax^{2} - 2ahx + ah^{2} + k = x^{2} - 6x + 11\)

Comparing, we have

\(a = 1\)

\(2ah = 6 \implies 2h = 6; h = 3\)

\(ah^{2} + k = 11 \implies (1 \times 3^{2}) + k = 11\)

\(9 + k = 11 \implies k = 2\)

\(\therefore a + h + k = 1 + 3 + 2 = 6\)

285.

The initial and final velocities of an object of mass 5 kg are \(u = \begin{pmatrix} 1 \\ 3 \end{pmatrix}\) and \(v = \begin{pmatrix} 4 \\ 7 \end{pmatrix}\) respectively. Find the magnitude of its change in momentum.

A.

25

B.

15

C.

\(3\sqrt{7}\)

D.

\(\sqrt{10}\)

Correct answer is A

Change in momentum = m (v - u)

= \(5 \times (\begin{pmatrix} 4 \\ 7 \end{pmatrix} - \begin{pmatrix} 1 \\ 3 \end{pmatrix})\)

= \(5 \times \begin{pmatrix} 3 \\ 4 \end{pmatrix}\)

= \(\begin{pmatrix} 15 \\ 20 \end{pmatrix}\)

\(|m(v - u)| = \sqrt{15^{2} + 20^{2}} = \sqrt{625} = 25\)