\(2 + \sqrt{2}\)
\(2 + \sqrt{3}\)
\(2 - \sqrt{2}\)
\(1 + 2\sqrt{2}\)
Correct answer is A
\(\sin 45 = \frac{\sqrt{2}}{2}\)
\(\frac{1}{1 - \sin 45} = \frac{1}{1 - \frac{\sqrt{2}}{2}}\)
\(\frac{2}{2 - \sqrt{2}} = \frac{4 + 2\sqrt{2}}{4 - 2}\)
= \(2 + \sqrt{2}\)
Evaluate \(\lim \limits_{x \to 1} \frac{1 - x}{x^{2} - 3x + 2}\)...
Find the coordinates of the centre of the circle 3x\(^2\) + 3y\(^2\) - 6x + 9y - 5 = 0...
Given that \(\frac{1}{8^{2y - 3y}} = 2^{y + 2}\)....
Find the inverse of \(\begin{pmatrix} 3 & 5 \\ 1 & 2 \end{pmatrix}\)...
Find the constant term in the binomial expansion of (2x\(^2\) + \(\frac{1}{x^2}\))\(...
From the diagram above, which of the following represents the vector V in component form? ...
Simplify \(\frac{\sqrt{3}}{\sqrt{3} - 1} + \frac{\sqrt{3}}{\sqrt{3} +1}\)...