\(2\sqrt{2}\)
\(\sqrt{13}\)
\(5\)
\(\sqrt{29}\)
Correct answer is D
\(p = \begin{pmatrix} 2 \\ -2 \end{pmatrix} , q = \begin{pmatrix} 3 \\ 4 \end{pmatrix}\)
\(\frac{1}{2}p = \begin{pmatrix} 1 \\ -1 \end{pmatrix}\)
\(q - \frac{1}{2}p = \begin{pmatrix} 3 \\ 4 \end{pmatrix} - \begin{pmatrix} 1 \\ -1 \end{pmatrix} = \begin{pmatrix} 2 \\ 5 \end{pmatrix}\)
\(|q - \frac{1}{2}p| = \sqrt{2^{2} + 5^{2}} = \sqrt{29}\)
Evaluate \(\frac{1}{1 - \sin 60°}\), leaving your answer in surd form....
Differentiate \(x^{2} + xy - 5 = 0\)...
Express \(\frac{8 - 3\sqrt{6}}{2\sqrt{3} + 3\sqrt{2}}\) in the form \(p\sqrt{3} + q\sqrt{2}\)...
If →PQ = -2i + 5j and →RQ = -i - 7j, find →PR ...
Given that \((\sqrt{3} - 5\sqrt{2})(\sqrt{3} + \sqrt{2}) = p + q\sqrt{6}\), find q....
Find the sum of the first 20 terms of the sequence -7-3, 1, ...... ...