Further Mathematics questions and answers

Further Mathematics Questions and Answers

Test your knowledge of advanced level mathematics with this aptitude test. This test comprises Further Maths questions and answers from past JAMB and WAEC examinations.

261.

A body is acted upon by two forces \(F_{1} = (5 N, 060°)\) and \(F_{2} = (10 N, 180°)\). Find the magnitude of the resultant force.

A.

18.75 N

B.

15.75 N

C.

9.50 N

D.

8.66 N

Correct answer is D

\(F_{1} = (5 N, 060°) = 5 \cos 60 i + 5 \sin 60 j = 2.5 i + \frac{5\sqrt{3}}{2}j\)

\(F_{2} = (10 N, 180°) = 10 \cos 180 i + 10 \sin 180 j = -10i\)

\(R = F_{1} + F_{2} = -7.5 i + \frac{5\sqrt{3}}{2}j\)

\(|R| = \sqrt{(-7.5)^{2} + (\frac{5\sqrt{3}}{2})^{2}}\)

= \(\sqrt{56.25 + 18.75} = \sqrt{75}\)

= 8.66 N

262.

A bag contains 2 red and 4 green sweets of the same size and shape. Two boys pick a sweet each from the box, one after the other, without replacement. What is the probability that at least a sweet with green wrapper is picked?

A.

\(\frac{1}{5}\)

B.

\(\frac{2}{5}\)

C.

\(\frac{8}{15}\)

D.

\(\frac{14}{15}\)

Correct answer is D

P(at least one green wrapper) = 1 - P(no green wrapper)

= \(1 - (\frac{2}{6} \times \frac{1}{5})\)

= \(1 - \frac{1}{15}\)

= \(\frac{14}{15}\)

263.

If \(f(x) = mx^{2} - 6x - 3\) and \(f'(1) = 12\), find the value of the constant m.

A.

9

B.

3

C.

-3

D.

-4

Correct answer is A

\(f(x) = mx^{2} - 6x - 3\)

\(f '(x) = \frac{\mathrm d y}{\mathrm d x} = 2mx - 6\)

\(f'(1) = 2m - 6 = 12\)

\(2m = 18 \implies m = 9\)

264.

Evaluate \(\lim \limits_{x \to 3} \frac{x^{2} - 2x - 3}{x - 3}\)

A.

4

B.

3

C.

2

D.

0

Correct answer is A

\(\lim \limits_{x \to 3} \frac{x^{2} - 2x - 3}{x - 3}\)

\(\frac{x^{2} - 2x - 3}{x - 3} = \frac{x^{2} - 3x + x - 3}{x - 3}\)

\(\frac{(x - 3)(x + 1)}{x - 3} = x + 1\)

\(\lim \limits_{x \to 3} \frac{x^{2} - 2x - 3}{x - 3} \equiv \lim \limits_{x \to 3} (x + 1)\) (L'Hopital rule)

\(\lim \limits_{x \to 3} (x + 1) = 3 + 1 = 4\)

265.

Calculate in surd form, the value of \(\tan 15°\).

A.

\(2 + \sqrt{3}\)

B.

\(1 + \sqrt{3}\)

C.

\(\sqrt{3} - 1\)

D.

\(2 - \sqrt{3}\)

Correct answer is D

\(\tan 15 = \tan (60 - 45)\)

\(\tan (x - y) = \frac{\tan x - \tan y}{1 + \tan x \tan y}\)

\(\tan (60 - 45) = \frac{\tan 60 - \tan 45}{1 + \tan 60 \tan 45}\)

= \(\frac{\sqrt{3} - 1}{1 + (\sqrt{3} \times 1)}\)

= \(\frac{\sqrt{3} - 1}{1 + \sqrt{3}}\)

Rationalizing by multiplying denominator and numerator by \(1 - \sqrt{3}\),

\(\tan 15 = 2 - \sqrt{3}\)