\(8\sqrt2^n\)
\(2^{(n+2)}\sqrt2\)
\(\sqrt2^{(n+3)}\)
\(8n\sqrt2\)
Correct answer is B
8√2, 16√2, 32√2, ..
\(a = 8\sqrt2; r =\frac{T_2}{T_1}=\frac{16\sqrt2}{8\sqrt2}=2\)
\(T_n=ar^{n-1}\)
\(T_n=8\sqrt2 \times 2^{n-1}\)
\(T_n=2^3\times2^{n-1}\times\sqrt2\)
\(T_n=2^{3+n-1}\times\sqrt2\)
\(\therefore T_n= 2^{(n+2)}\sqrt2\)
Given that \(y = x(x + 1)^{2}\), calculate the maximum value of y....
Find the area between line y = x + 1 and the x-axis from x = -2 to x = 0. ...
If \(P = \begin{pmatrix} 1 & -2 \\ 3 & 4 \end{pmatrix}\) and \(Q = \begin{pmatrix} -2 & ...
Simplify \(\frac{\log_{5} 8}{\log_{5} \sqrt{8}}\)....
Find the variance of 11, 12, 13, 14 and 15. ...
The remainder when \(x^{3} - 2x + m\) is divided by \(x - 1\) is equal to the remainder when \...
If \(2\sin^{2}\theta = 1 + \cos \theta, 0° \leq \theta \leq 90°\), find \(\theta\)...