\(x = \frac{-41}{8}\)
\(x = \frac{-1}{4}\)
\(x = \frac{1}{4}\)
\(x = \frac{41}{8}\)
Correct answer is B
The line of symmetry of the curve is at the minimum point of the curve (ie y' = 0)
\(\frac{ \mathrm d}{ \mathrm d x} \left ( 5-x-2x^{2} \right)\) = -1 - 4x
If y' = 0, we have \(-1 - 4x = 0 \implies 4x = -1\)
\(x = \frac{-1}{4}\)
\(P = {x : 1 \leq x \leq 6}\) and \(Q = {x : 2 < x < 9}\) where \(x \in R\), find \(P \cap Q\)...
If \(\begin{vmatrix} 4 & x \\ 5 & 3 \end{vmatrix} = 32\), find the value of x....
Find the direction cosines of the vector \(4i - 3j\)....
If \(\log_{3} x = \log_{9} 3\), find the value of x....
Age in years 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 Frequency 6 8 14 10 12 ...