If \(\log_{3}a - 2 = 3\log_{3}b\), express a in terms of b.

A.

\(a = b^{3} - 3\)

B.

\(a = b^{3} - 9\)

C.

\(a = 9b^{3}\)

D.

\(a = \frac{b^{3}}{9}\)

Correct answer is C

\(\log_{3}a - 2 = 3\log_{3}b\)

Using the laws of logarithm, we know that \( 2 = 2\log_{3}3 = \log_{3}3^{2}\)

\(\therefore \log_{3}a - \log_{3}3^{2} = \log_{3}b^{3}\)

= \(\log_{3}(\frac{a}{3^{2}}) = \log_{3}b^{3}   \implies  \frac{a}{9} = b^{3}\)

\(\implies a = 9b^{3}\)