\(a = b^{3} - 3\)
\(a = b^{3} - 9\)
\(a = 9b^{3}\)
\(a = \frac{b^{3}}{9}\)
Correct answer is C
\(\log_{3}a - 2 = 3\log_{3}b\)
Using the laws of logarithm, we know that \( 2 = 2\log_{3}3 = \log_{3}3^{2}\)
\(\therefore \log_{3}a - \log_{3}3^{2} = \log_{3}b^{3}\)
= \(\log_{3}(\frac{a}{3^{2}}) = \log_{3}b^{3} \implies \frac{a}{9} = b^{3}\)
\(\implies a = 9b^{3}\)
Forces 90N and 120N act in the directions 120° and 240° respectively. Find the resultant of ...
Find the equation to the circle \(x^{2} + y^{2} - 4x - 2y = 0\) at the point (1, 3)....
Simplify \((216)^{-\frac{2}{3}} \times (0.16)^{-\frac{3}{2}}\)...
If \(x^2+y^2+-2x-6y+5 =0\), evaluate dy/dx when x=3 and y=2....
Calculate the mean deviation of 5, 8, 2, 9 and 6 ...
Marks 5 - 7 8 - 10 11 - 13 14 - 16 17 - 19 20 - 22 Frequency 4 7 26 41 1...
If √5 cosx + √15sinx = 0, for 0° < x < 360°, find the values of x. ...