a=b3−3
a=b3−9
a=9b3
a=b39
Correct answer is C
log3a−2=3log3b
Using the laws of logarithm, we know that 2=2log33=log332
∴
= \log_{3}(\frac{a}{3^{2}}) = \log_{3}b^{3} \implies \frac{a}{9} = b^{3}
\implies a = 9b^{3}
The line y = mx - 3 is a tangent to the curve y = 1 - 3x + 2x^{3} at (1, 0). Find the value ...
The table shows the operation * on the set {x, y, z, w}. * X Y Z W X Y Z X W ...
Marks 0 1 2 3 4 5 Number of candidates 6 4 8 10 9 3 The table abov...
If h(x) = x^{3} - \frac{1}{x^{3}}, evaluate h(a) - h(\frac{1}{a})...
Find the nth term of the linear sequence (A.P) (5y + 1), ( 2y + 1), (1- y),... ...
The coefficient of the 7th term in the binomial expansion of (2 - \frac{x}{3})^{10} in ascending...
If \sin x = -\sin 70°, 0° < x < 360°, determine the two possible values of x....
What is the coordinate of the centre of the circle 5x^{2} + 5y^{2} - 15x + 25y - 3 = 0?...