2y - x -5 = 0
2y + x - 5 = 0
2y + x + 5 = 0
2y - x + 5 = 0
Correct answer is A
We are given the equation \(x^{2} + y^{2} - 4x - 2y = 0\)
\(y = x^{2} + y^{2} - 4x - 2y \)
Using the method of implicit differentiation,
\(\frac{\mathrm d y}{\mathrm d x} = 2x + 2y\frac{\mathrm d y}{\mathrm d x} - 4 - 2\frac{\mathrm d y}{\mathrm d x}\)
For the tangent, \(\frac{\mathrm d y}{\mathrm d x} = 0\),
\(\therefore 2x + 2y\frac{\mathrm d y}{\mathrm d x} - 4 - 2\frac{\mathrm d y}{\mathrm d x} = 0\)
\((2y - 2)\frac{\mathrm d y}{\mathrm d x} = 4 - 2x \implies \frac{\mathrm d y}{\mathrm d x} = \frac{4 - 2x}{2y - 2}\)
At (1, 3), \(\frac{\mathrm d y}{\mathrm d x} = \frac{4 - 2(1)}{2(3) - 2} = \frac{2}{4} = \frac{1}{2}\)
Equation: \(\frac{y - 3}{x - 1} = \frac{1}{2} \implies 2y - 6 = x - 1\)
= \(2y - x - 6 + 1 = 2y - x - 5 = 0\)
Simplify \(\frac{1 - 2\sqrt{5}}{2 + 3\sqrt{2}}\)....
Calculate the mean deviation of 5, 8, 2, 9 and 6 ...
Given that \(r = 3i + 4j\) and \(t = -5i + 12j\), find the acute angle between them....
Find the equation of the normal to the curve y = \(3x^2 + 2\) at point (1, 5)...
Given that \(x^{2} + 4x + k = (x + r)^{2} + 1\), find the value of k and r...
The equation of a circle is \(3x^{2} + 3y^{2} + 6x - 12y + 6 = 0\). Find its radius...