(x + 2)(x + 5)(y + 1)
(x + 2)(x - 5)(y + 1)
(x - 2)(x + 5)(y + 1)
(x - 2)(x - 5)(y + 1)
Correct answer is C
x2+x2y+3x−10y+3xy−10
= x2+x2y+3x+3xy−10y−10=x2(1+y)+3x(1+y)−10(y+1)
= (x2+3x−10)(y+1)
= (x2+3x−10)=x2−2x+5x−10
= x(x−2)+5(x−2)=(x−2)(x+5)
∴.
Given that X : R \to R is defined by x = \frac{y + 1}{5 - y} , y \in R, find ...
The mean and median of integers x, y, z and t are 5 and z respectively. If x < y < z < t an...
If ^nC_2 = 15, find the value of n...
Given that \sin x = \frac{-\sqrt{3}}{2} and \cos x > 0, find x...
If \sqrt{x} + \sqrt{x + 1} = \sqrt{2x + 1}, find the possible values of x....
If √5 cosx + √15sinx = 0, for 0° < x < 360°, find the values of x. ...
If \log_{3} x = \log_{9} 3, find the value of x....
Given that \sqrt{6}, 3\sqrt{2}, 3\sqrt{6}, 9\sqrt{2},... are the first four terms of an exponent...
The functions f and g are defined on the set, R, of real numbers by f : x \to x^{2} - x - 6 and ...