(\(\frac{-1}{4}\), \(\frac{3}{4}\))
(\(\frac{1}{4}\), \(\frac{3}{4}\)
(\(\frac{-1}{2}\), \(\frac{3}{2}\))
(\(\frac{-1}{2}\), \(\frac{-3}{2}\))
Correct answer is B
2x\(^2\) + 2y\(^2\) - x - 3y - 41
standard equation of circle
(x-a)\(^2\) + (x-b)\(^2\) = r\(^2\)
General form of equation of a circle.
x\(^2\) + y\(^2\) + 2gx + 2fy + c = 0
a = -g, b = -f., r2 = g2 + f2 - c
the centre of the circle is (a,b)
comparing the equation with the general form of equation of circle.
2x\(^2\) + 2y\(^2\) - x - 3y - 41
= x\(^2\) + y\(^2\) + 2gx + 2fy + c
2x\(^2\) + 2y\(^2\) - x - 3y - 41 = 0
divide through by 2
g = \(\frac{-1}{4}\) ; 2g = \(\frac{-1}{2}\)
f = \(\frac{-3}{4}\) ; 2f = \(\frac{-3}{2}\)
a = -g → - \(\frac{-1}{4}\) ; = \(\frac{1}{4}\)
b = -f → - (\frac{-3}{4}\) = (\frac{3}{4}\)
therefore the centre is (\(\frac{1}{4}\), \(\frac{3}{4}\))
Find the domain of \(f(x) = \frac{x}{3 - x}, x \in R\), the set of real numbers....
If \(\begin{vmatrix} k & k \\ 4 & k \end{vmatrix} + \begin{vmatrix} 2 & 3 \\...
Two forces, each of magnitude 16 N, are inclined to each other at an angle of 60°. Calculate the...
Given that \(^{n}P_{r} = 90\) and \(^{n}C_{r} = 15\), find the value of r....
If \(\log_{9} 3 + 2x = 1\), find x....
Find the unit vector in the direction of (-5i + 12j). ...
If the solution set of \(x^{2} + kx - 5 = 0\) is (-1, 5), find the value of k....