(\(\frac{-1}{4}\), \(\frac{3}{4}\))
(\(\frac{1}{4}\), \(\frac{3}{4}\)
(\(\frac{-1}{2}\), \(\frac{3}{2}\))
(\(\frac{-1}{2}\), \(\frac{-3}{2}\))
Correct answer is B
2x\(^2\) + 2y\(^2\) - x - 3y - 41
standard equation of circle
(x-a)\(^2\) + (x-b)\(^2\) = r\(^2\)
General form of equation of a circle.
x\(^2\) + y\(^2\) + 2gx + 2fy + c = 0
a = -g, b = -f., r2 = g2 + f2 - c
the centre of the circle is (a,b)
comparing the equation with the general form of equation of circle.
2x\(^2\) + 2y\(^2\) - x - 3y - 41
= x\(^2\) + y\(^2\) + 2gx + 2fy + c
2x\(^2\) + 2y\(^2\) - x - 3y - 41 = 0
divide through by 2
g = \(\frac{-1}{4}\) ; 2g = \(\frac{-1}{2}\)
f = \(\frac{-3}{4}\) ; 2f = \(\frac{-3}{2}\)
a = -g → - \(\frac{-1}{4}\) ; = \(\frac{1}{4}\)
b = -f → - (\frac{-3}{4}\) = (\frac{3}{4}\)
therefore the centre is (\(\frac{1}{4}\), \(\frac{3}{4}\))
If \(h(x) = x^{3} - \frac{1}{x^{3}}\), evaluate \(h(a) - h(\frac{1}{a})\)...
The functions f:x → 2x\(^2\) + 3x -7 and g:x →5x\(^2\) + 7x - 6 are defined on the se...
Given that \(a^{\frac{5}{6}} \times a^{\frac{-1}{n}} = 1\), solve for n...
If the polynomial \(f(x) = 3x^{3} - 2x^{2} + 7x + 5\) is divided by (x - 1), find the remainder....
If \(log_{y}\frac{1}{8}\) = 3, find the value of y....
Simplify \(\sqrt[3]{\frac{8}{27}} - (\frac{4}{9})^{-\frac{1}{2}}\)...
Given that \(p = \begin{bmatrix} x&4\\3&7\end{bmatrix} Q =\begin{bmatrix} x&3\\1&2x\...
In which of the following series can be the formula S = \(\frac{a}{1 - r}\) where a is the firs...
If log 5(\(\frac{125x^3}{\sqrt[ 3 ] {y}}\) is expressed in the values of p, q and k respec...