x ≤ -5 or x ≥ \(\frac{3}{2}\)
x ≥ -5 or x ≤\(\frac{3}{2}\)
-5 ≤ x ≤ \(\frac{3}{5}\)
\(\frac{3}{5}\) ≤ x ≤ -5
Correct answer is A
2x\(^2\) + 7x - 15 ≥ 0
2x\(^2\) -3x + 10x - 15 ≥ 0
x(2x - 3) + 5(2x - 3) ≥ 0
(x+5)(2x-3) ≥ 0
the points on x-axis where the graph ≥ 0
x ≤ -5 or x ≥ \(\frac{3}{2}\)
If f(x-1) = x\(^3\) + 3x\(^2\) + 4x - 5, find f(2)...
The equation of a circle is \(3x^{2} + 3y^{2} + 6x - 12y + 6 = 0\). Find its radius...
Find \(\lim\limits_{x \to 3} (\frac{x^{3} + x^{2} - 12x}{x^{2} - 9})\)...
Given that \(r = 3i + 4j\) and \(t = -5i + 12j\), find the acute angle between them....
If \(x = i - 3j\) and \(y = 6i + j\), calculate the angle between x and y...