x ≤ -5 or x ≥ \(\frac{3}{2}\)
x ≥ -5 or x ≤\(\frac{3}{2}\)
-5 ≤ x ≤ \(\frac{3}{5}\)
\(\frac{3}{5}\) ≤ x ≤ -5
Correct answer is A
2x\(^2\) + 7x - 15 ≥ 0
2x\(^2\) -3x + 10x - 15 ≥ 0
x(2x - 3) + 5(2x - 3) ≥ 0
(x+5)(2x-3) ≥ 0
the points on x-axis where the graph ≥ 0
x ≤ -5 or x ≥ \(\frac{3}{2}\)
Simplify \(\frac{\sqrt{3}}{\sqrt{3} -1} + \frac{\sqrt{3}}{\sqrt{3} + 1}\)...
If \(T = \begin{pmatrix} -2 & -5 \\ 3 & 8 \end{pmatrix}\), find \(T^{-1}\), the inverse of T...
Find the number of different arrangements of the word IKOTITINA. ...
A binary operation ♦ is defined on the set R, of real numbers by \(a ♦ b = \fr...
Given that \(\frac{3x + 4}{(x - 2)(x + 3)}≡\frac{P}{x + 3}+\frac{Q}{x - 2}\),find the value of...
If \(Px^{2} + (P+1)x + P = 0\) has equal roots, find the values of P....
Solve: 4sin\(^2\)θ + 1 = 2, where 0º < θ < 180º...
Given that M = \(\begin{pmatrix} 3 & 2 \\ -1 & 4 \end{pmatrix}\) and N = ...