Find an expression for y given that \(\frac{\mathrm d y}{\mathrm d x} = x^{2}\sqrt{x}\)
\(\frac{1x^{\frac{2}{7}}}{7} + c\)
\(\frac{2x^{\frac{3}{2}}}{7} + c\)
\(\frac{2x^{\frac{7}{2}}}{7} + c\)
\(\frac{1x^{\frac{7}{2}}}{7} + c\)
Correct answer is C
\(x^{2}\sqrt{x} \equiv x^{2}. x^{\frac{1}{2}} = x^{\frac{5}{2}}\)
\(\implies \frac{\mathrm d y}{\mathrm d x} = x^{\frac{5}{2}}\)
\(y = \int x^{\frac{5}{2}} \mathrm d x\)
= \(\frac{x^{\frac{5}{2} + 1}}{\frac{5}{2} + 1} + c\)
= \(\frac{2x^{\frac{7}{2}}}{7} + c\)
11\(cm^{2}s^{-1}\)
22\(cm^{2}s^{-1}\)
33\(cm^{2}s^{-1}\)
44\(cm^{2}s^{-1}\)
Correct answer is B
With radius = 7cm, \(Area = \pi r^{2} = \frac{22}{7} \times 7^{2}\)
= \(154cm^{2}\)
The next second, radius = 7.5cm, \(Area = \pi r^{2} = \frac{22}{7} \times 7.5^{2}\)
= \(176cm^{2}\)
Change in area = \((176 - 154)cm^{2} = 22cm^{2}\)
\(\therefore\) The rate of increase = \(22cm^{2}s^{-1}\)
OR
\(Area (A) = \pi r^{2} \implies \frac{\mathrm d A}{\mathrm d r} = 2\pi r\)
Given \(\frac{\mathrm d r}{\mathrm d t} = 0.5\)
\(\frac{\mathrm d A}{\mathrm d r} \times \frac{\mathrm d r}{\mathrm d t} = \frac{\mathrm d A}{\mathrm d t}\)
\(\frac{\mathrm d A}{\mathrm d t} = 2\pi r \times 0.5 = 2 \times \frac{22}{7} \times 7 \times 0.5\)
= \(22cm^{2}s^{-1}\)
Find the minimum value of \(y = 3x^{2} - x - 6\).
\(-6\frac{1}{6}\)
\(-6\frac{1}{12}\)
\(-6\)
\(0\)
Correct answer is B
\(3x^{2} - x - 6 = y\)
\(a = 3, b = -1, c = -6\)
Minimum value of x = \(\frac{-b}{2a} = \frac{-(-1)}{6} = \frac{1}{6}\)
\(y(\frac{1}{6}) = 3(\frac{1}{6}^{2}) - \frac{1}{6} - 6 = -6\frac{1}{12}\)
Find the gradient to the normal of the curve \(y = x^{3} - x^{2}\) at the point where x = 2.
\(\frac{-1}{8}\)
\(\frac{1}{8}\)
\(\frac{-1}{24}\)
\(1\)
Correct answer is A
Given : \(y = x^{3} - x^{2}\)
\(\frac{\mathrm d y}{\mathrm d x} = 3x^{2} - 2x\)
\(\therefore \text{The gradient of the tangent at point (x = 2)} = 3(2^{2}) - 2(2) \)
= \(12 - 4 = 8\)
Recall, the tangent and the normal are perpendicular to each other and the product of the gradients of perpendicular lines = -1.
\(\implies \text{the gradient of the normal} = \frac{-1}{8}\)
Find \(\lim\limits_{x \to 3} \frac{2x^{2} + x - 21}{x - 3}\).
0
1
7
13
Correct answer is D
\(\lim\limits_{x \to 3} \frac{2x^{2} + x - 21}{x - 3}\)
\(2x^{2} + x - 21 = 2x^{2} - 6x + 7x - 21 \) (by factorizing)
= \((2x + 7)(x - 3)\)
\(\therefore \lim\limits_{x \to 3} \frac{2x^{2} + x - 21}{x - 3} \equiv \lim\limits_{x \to 3} \frac{(2x+7)(x-3)}{x-3}\)
\(\lim\limits_{x \to 3} (2x + 7) = 2(3) + 7 = 13\)