\(\frac{81}{32}\)
\(\frac{9}{8}\)
\(\frac{1}{4}\)
\(\frac{32}{729}\)
Correct answer is D
ar = \(\frac{2}{9}\) .....(i)
ar\(^3\) = \(\frac{8}{81}\) ......(ii)
\(\frac{ar3}{ar} = \frac{8}{81} \times \frac{9}{2}\)
r\(^2 = \frac{4}{9}\)
r = \(\sqrt{\frac{4}{9}}\)
= \(\frac{2}{3}\)
ar = \(\frac{2}{9}\)
a(\(\frac{2}{3}\)) = \(\frac{2}{9}\)
a = (\(\frac{2}{3}\)) = \(\frac{2}{9}\)
a = \(\frac{2}{9} \times \frac{3}{2}\)
a = \(\frac{1}{3}\)
T\(_r\) = ar\(^5\) = (\(\frac{1}{3}\))(\(\frac{2}{5}\))\(^5\)
= \(\frac{32}{729}\)
Differentiate \(\frac{x}{x + 1}\) with respect to x...
Calculate in surd form, the value of \(\tan 15°\)....
Find the radius of the circle \(x^{2} + y^{2} - 8x - 2y + 1 = 0\)....
If \(4x^{2} + 5kx + 10\) is a perfect square, find the value of k...
Given that \(f(x) = 2x^{3} - 3x^{2} - 11x + 6\) and \(f(3) = 0\), factorize f(x)...
If (x + 1) is a factor of the polynomial \(x^{3} + px^{2} + x + 6\). Find the value of p....
Simplify \(2\log_{3} 8 - 3\log_{3} 2\)...
Forces 90N and 120N act in the directions 120° and 240° respectively. Find the resultant of ...
If \(log_{10}(3x+1) + log_{10}4 = log_{10}(9x+2)\), find the value of x ...
Find the equation of the normal to the curve y = \(3x^2 + 2\) at point (1, 5)...