\(\frac{81}{32}\)
\(\frac{9}{8}\)
\(\frac{1}{4}\)
\(\frac{32}{729}\)
Correct answer is D
ar = \(\frac{2}{9}\) .....(i)
ar\(^3\) = \(\frac{8}{81}\) ......(ii)
\(\frac{ar3}{ar} = \frac{8}{81} \times \frac{9}{2}\)
r\(^2 = \frac{4}{9}\)
r = \(\sqrt{\frac{4}{9}}\)
= \(\frac{2}{3}\)
ar = \(\frac{2}{9}\)
a(\(\frac{2}{3}\)) = \(\frac{2}{9}\)
a = (\(\frac{2}{3}\)) = \(\frac{2}{9}\)
a = \(\frac{2}{9} \times \frac{3}{2}\)
a = \(\frac{1}{3}\)
T\(_r\) = ar\(^5\) = (\(\frac{1}{3}\))(\(\frac{2}{5}\))\(^5\)
= \(\frac{32}{729}\)
If \(P = \begin{pmatrix} 1 & 2 \\ 5 & 1 \end{pmatrix}\) and \(Q = \begin{pmatrix} 0 & 1 ...
Find the range of values of x for which \(2x^{2} + 7x - 15 > 0\)....
Find the fourth term in the expansion of \((3x - y)^{6}\)....
From the diagram above, \(h[g(3)]\) is...
If α and β are the roots of \(7x2 +12x - 4 = 0\),find the value of \(\frac{αβ}...
Find \(\lim \limits_{x \to 3} \frac{x + 3}{x^{2} - x - 12}\)...
Given that g ; x \(\to\) 3x and f ; x \(\to\) cos x. Find the value of g\(^o\) f(20\(^o\)) ...
Find an expression for y given that \(\frac{\mathrm d y}{\mathrm d x} = x^{2}\sqrt{x}\)...