\(1\)
\(\frac{1}{2}\)
\(\frac{5}{12}\)
\(\frac{1}{12}\)
Correct answer is C
\(p(P) = \frac{1}{2}, p(P') = \frac{1}{2}\)
\(p(Q) = \frac{1}{3}, p(Q') = \frac{2}{3}\)
\(p(R) = \frac{3}{4}, p(R') = \frac{1}{4}\)
p(exactly two hit the target) = p(P and Q and R') + p(P and R and Q') + p(Q and R and P')
= \((\frac{1}{2} \times \frac{1}{3} \times \frac{1}{4}) + (\frac{1}{2} \times \frac{3}{4} \times \frac{2}{3}) + (\frac{1}{3} \times \frac{3}{4} \times \frac{1}{2})\)
= \(\frac{1}{24} + \frac{6}{24} + \frac{3}{24}\)
= \(\frac{5}{12}\)
Simplify \(\frac{\sqrt{3}}{\sqrt{3} - 1} + \frac{\sqrt{3}}{\sqrt{3} +1}\)...
Given that \(\sin x = \frac{-\sqrt{3}}{2}\) and \(\cos x > 0\), find x...
Given that \(f : x \to x^{2}\) and \(g : x \to x + 3\), where \(x \in R\), find \(f o g(2)\)....
Given that \(q = 9i + 6j\) and \(r = 4i - 6j\), which of the following statements is true?...
Find the unit vector in the direction of \(-2i + 5j\)....
If \(f(x) = \frac{1}{2 - x}, x \neq 2\), find \(f^{-1}(-\frac{1}{2})\)....