\(1\)
\(\frac{1}{2}\)
\(\frac{5}{12}\)
\(\frac{1}{12}\)
Correct answer is C
\(p(P) = \frac{1}{2}, p(P') = \frac{1}{2}\)
\(p(Q) = \frac{1}{3}, p(Q') = \frac{2}{3}\)
\(p(R) = \frac{3}{4}, p(R') = \frac{1}{4}\)
p(exactly two hit the target) = p(P and Q and R') + p(P and R and Q') + p(Q and R and P')
= \((\frac{1}{2} \times \frac{1}{3} \times \frac{1}{4}) + (\frac{1}{2} \times \frac{3}{4} \times \frac{2}{3}) + (\frac{1}{3} \times \frac{3}{4} \times \frac{1}{2})\)
= \(\frac{1}{24} + \frac{6}{24} + \frac{3}{24}\)
= \(\frac{5}{12}\)