\(\begin{pmatrix} \frac{17}{4} \\ 7 \end{pmatrix}\)
\(\begin{pmatrix} \frac{17}{4} \\ 5 \end{pmatrix}\)
\(\begin{pmatrix} \frac{17}{4} \\ 3 \end{pmatrix}\)
\(\begin{pmatrix} \frac{17}{4} \\ 2 \end{pmatrix}\)
Correct answer is B
\(a = \begin{pmatrix} 2 \\ 3 \end{pmatrix}\); \(b = \begin{pmatrix} -1 \\ 4 \end{pmatrix}\)
\(\implies 2 \times a = \begin{pmatrix} 4 \\ 6 \end{pmatrix}\) and \(\frac{1}{4} \times b = \begin{pmatrix} -\frac{1}{4} \\ 1 \end{pmatrix}\)
\(\therefore 2a - \frac{1}{4}b = \begin{pmatrix} 4 - \frac{-1}{4} \\ 6 - 1 \end{pmatrix}\)
= \(\begin{pmatrix} \frac{17}{4} \\ 5 \end{pmatrix}\)
The remainder when \(x^{3} - 2x + m\) is divided by \(x - 1\) is equal to the remainder when \...
If \((x - 5)\) is a factor of \(x^3 - 4x^2 - 11x + 30\), find the remaining factors....
Given that \(y = 4 - 9x\) and \(\Delta x = 0.1\), calculate \(\Delta y\)....
Express \(\frac{3}{3 - √6}\) in the form \(x + m√y\)...
In which of the following series can be the formula S = \(\frac{a}{1 - r}\) where a is the firs...
If \(\log_{9} 3 + 2x = 1\), find x....
Age in years 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 Frequency 6 8 14 10 12 ...