\(\frac{n(n-r)}{r}\)
\(\frac{n}{r(n-r)}\)
\(\frac{1}{r(n-r)}\)
\(\frac{n+1-r}{r}\)
Correct answer is D
\(^{n}C_{r} = \frac{n!}{(n-r)! r!}\)
\(^{n}C_{r - 1} = \frac{n!}{(n - (r - 1))! (r - 1)!}\)
\(^{n}C_{r} ÷ ^{n}C_{r - 1} = \frac{n!}{(n - r)! r!} ÷ \frac{n!}{(n-(r-1))!(r-1)!}\)
= \(\frac{n!}{(n-r)! r!} \times \frac{(n-(r-1)! (r-1)!}{n!}\)
= \(\frac{(n + 1 - r)! (r - 1)!}{(n - r)! r!}\)
= \(\frac{(n+1-r)(n-r)! (r-1)!}{(n-r)! r (r - 1)!}\)
= \(\frac{n + 1 - r}{r}\)
Express \(\frac{1}{1 - \sin 45°}\) in surd form. ...
Given that \(\sin x = \frac{-\sqrt{3}}{2}\) and \(\cos x > 0\), find x...
Marks 5-7 8-10 11-13 14-16 17-19 20-22 No of students 4 7 26 41 14 8 T...
Two forces, each of magnitude 16 N, are inclined to each other at an angle of 60°. Calculate the...
Find the coefficient of x\(^3\)y\(^2\) in the binomial expansion of (x-2y)\(^5\)...
If \(\frac{6x + k}{2x^2 + 7x - 15}\) = \(\frac{4}{x + 5} - \frac{2}{2x - 3}\). Find the value ...