\(\begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}\)
\(\begin{pmatrix} 27 & 12 \\ 16 & -15 \end{pmatrix}\)
\(\begin{pmatrix} -20 & -6 \\ 12 & -8 \end{pmatrix}\)
\(\begin{pmatrix} 11 & 12 \\ 30 & -11 \end{pmatrix}\)
Correct answer is D
\(P = \begin{pmatrix} -2 & 1 \\ 3 & 4 \end{pmatrix}; Q = \begin{pmatrix} 5 & -3 \\ 2 & -1 \end{pmatrix}\)
= \(PQ = \begin{pmatrix} -10+2 & 6-1 \\ 15+8 & -9-4 \end{pmatrix}\)
= \(\begin{pmatrix} -8 & 5 \\ 23 & -13 \end{pmatrix}\)
\(QP = \begin{pmatrix} -10-9 & 5-12 \\ -4-3 & 2-4 \end{pmatrix}\)
= \(\begin{pmatrix} -19 & -7 \\ -7 & -2 \end{pmatrix}\)
\(PQ - QP = \begin{pmatrix} -8 & 5 \\ 23 & -13 \end{pmatrix} - \begin{pmatrix} -19 & -7 \\ -7 & -2 \end{pmatrix}\)
= \(\begin{pmatrix} 11 & 12 \\ 30 & -11 \end{pmatrix}\)
Calculate the variance of \(\sqrt{2}\), (1 + \(\sqrt{2}\)) and (2 + \(\sqrt{2}\)) ...
Find \(\lim \limits_{x \to 3} \frac{x + 3}{x^{2} - x - 12}\)...
If P = \(\begin {pmatrix} 2 & 3\\ -4 & 1 \end {pmatrix}\), Q = \(\begin{pmat...
Evaluate \(\int_{1}^{2} \frac{4}{x^{3}} \mathrm {d} x\)...
Find the equation to the circle \(x^{2} + y^{2} - 4x - 2y = 0\) at the point (1, 3)....
The equation of a circle is \(3x^{2} + 3y^{2} + 6x - 12y + 6 = 0\). Find its radius...