Home / Aptitude Tests / Further Mathematics / Given that \(P = \be...
Given that \(P = \begin{pmatrix} -2 & 1 \\ 3 & 4 \en...

Given that \(P = \begin{pmatrix} -2 & 1 \\ 3 & 4 \end{pmatrix}\) and \(Q = \begin{pmatrix} 5 & -3 \\ 2 & -1 \end{pmatrix}\), find PQ - QP

A.

\(\begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}\)

B.

\(\begin{pmatrix} 27 & 12 \\ 16 & -15 \end{pmatrix}\)

C.

\(\begin{pmatrix} -20 & -6 \\ 12 & -8 \end{pmatrix}\)

D.

\(\begin{pmatrix} 11 & 12 \\ 30 & -11 \end{pmatrix}\)

Correct answer is D

\(P = \begin{pmatrix} -2 & 1 \\ 3 & 4 \end{pmatrix}; Q = \begin{pmatrix} 5 & -3 \\ 2 & -1 \end{pmatrix}\)

= \(PQ = \begin{pmatrix} -10+2 & 6-1 \\ 15+8 & -9-4 \end{pmatrix}\)

= \(\begin{pmatrix} -8 & 5 \\ 23 & -13 \end{pmatrix}\)

\(QP = \begin{pmatrix} -10-9 & 5-12 \\ -4-3 & 2-4 \end{pmatrix}\)

= \(\begin{pmatrix} -19 & -7 \\ -7 & -2 \end{pmatrix}\) 

\(PQ - QP = \begin{pmatrix} -8 & 5 \\ 23 & -13 \end{pmatrix} - \begin{pmatrix} -19 & -7 \\ -7 & -2 \end{pmatrix}\)

= \(\begin{pmatrix} 11 & 12 \\ 30 & -11 \end{pmatrix}\)