Home / Aptitude Tests / Further Mathematics / Given that \(P = \be...
Given that \(P = \begin{pmatrix} 3 & 4 \\ 2 & x \end...

Given that \(P = \begin{pmatrix} 3 & 4 \\ 2 & x \end{pmatrix}; Q = \begin{pmatrix} 1 & 3 \\ -2 & 4 \end{pmatrix}; R = \begin{pmatrix} -5 & 25 \\ -8 & 26 \end{pmatrix}\)  and PQ = R, find the value of x.

A.

-5

B.

-2

C.

2

D.

5

Correct answer is D

\(P = \begin{pmatrix} 3 & 4 \\ 2 & x \end{pmatrix}; Q = \begin{pmatrix} 1 & 3 \\ -2 & 4 \end{pmatrix}; R = \begin{pmatrix} -5 & 25 \\ -8 & 26 \end{pmatrix}\) 

PQ = \(\begin{pmatrix} 3 & 4 \\ 2 & x \end{pmatrix} \begin{pmatrix} 1 & 3 \\ -2 & 4 \end{pmatrix} = \begin{pmatrix} -5 & 25 \\ 2 - 2x & 6 + 4x \end{pmatrix} = R\)

\(\implies 2 - 2x = -8; -2x = -8 - 2 = -10\)

\(6 + 4x = 26 \implies 4x = 26 - 6 = 20\)

\(\implies x = 5\)